Research Article
BibTex RIS Cite

DC Fast Charging Station Modeling and Control for Electric Vehicles

Year 2021, Volume: 11 Issue: 2, 680 - 704, 15.12.2021
https://doi.org/10.31466/kfbd.986040

Abstract

Due to environmental problems in the world, the need for electric vehicles is increasing. While the transition to Electric Vehicles continues, the acceleration of this process plays an important role in reducing environmental problems. In order to accelerate this transition, charging units should become widespread and charging time should be reduced. Higher power charging units are needed to reduce charging time. This is where DC (Direct Current) fast charging units come into play. In this study, the charging process of electric vehicles, the behavior of the DC fast charging unit on the battery and the control systems are modeled in MATLAB/Simulink environment. The designed model represents the electric power system that will charge electric vehicles and is suitable for more than one electric vehicle to be included in the DC fast charging system. The simulation is integrated according to the DC level-2 charging conditions. The system model consists of 1 AC(AC Current)/DC converter, 1 DC busbar, 2 DC/DC converters to charge electric vehicles and multiple EV batteries. The system model includes the design methods (AC/DC-DC/DC) design and different control strategies) and descriptions of these components. The simulation result shows that the filter and control system integrations in the electrical power system exhibit more stable behavior by correcting the negative effects on the power system. Thus, it offers positive outputs about the integration of DC fast charging units, which will increase rapidly in the future, into the power system and how this process should be established.

References

  • Arruda, L. N., Silva, S. M. and Filho, B. (2001). PLL structures for utility connected systems. in Proc. IEEE-IAS Annu. Meeting, 4, 2655-2660.
  • Bhattacharjee, T., Jamil, M. and Jana, A. (2018). Designing a controller circuit for three phase inverter in PV application. 3rd International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT) (pp. 14-15)
  • Chen,G.J Liu,Y.H., Cheng,Y.S. and Pai, H.Y.(2021). A novel optimal charging algorithm for lithium-ion batteries based on model predictive control. MDIP, Energies.
  • Clement-Nyns, K., Haesen, E. and Driesen, J. (2010). The impact of charging plug-in hybrid electric vehicles on a residential distribution grid. Trans. Power Syst., 25(1), 371-380
  • Dannehl, J., Wessels, C. and Fuchs, F. (2009). Limitations of voltage-oriented pi current control of grid-connected PWM rectifiers with LCL filters. IEEE Trans. Ind. Electron., 56(2), 380-388
  • Deilami, S., Masoum, A., Moses, P. And Masoum, M. (2011). Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile. IEEE Trans. Smart Grid, 2(3), 456-467
  • Ferdous, S.M., Shoeb, M.A., Shafiullah, G. and Oninda, M.A.M. (2020). Parallel resonant converter for battery charging application. 9th International Conference on Power and Energy Systems. Perth, Australia.
  • Guan-Chyun, H. And Liang-Rui, C. (2001). Fuzzy controlled lithium-ion battery charge system with active state of charge controller. Trans. Ind. Electron. 48, 585-593.
  • Iqbal, A., Moinoddin, S., Ahmad, S., Ali, M., Sarwar, A. and Mude, K.N. (2018). Power Electronics Handbook (4th ed.). 15th Chapter - Multiphase Converters. Oxford, England: Butterworth-Heinemann (pp. 457-528)
  • Johnson, V.H. (2002). Battery performance models in ADVISOR. Journal of Power Sources, 110(2), 321-329
  • Kahlane, A.E.W.H., Hassaine, L. and Kherchi, M. (2014). LCL filter design for photovoltaic grid connected systems. Renewables Energies Review 1st SIENR (pp. 227-232)
  • Karlsson, P. and Svensson, J. (2003). DC bus voltage control for a distributed power system. IEEE Transactions On Power Electronics, 18(6)
  • Khajezadeh, A., Ahmadipour, A. and Motlagh, M. S. (2014). DC-DC converters via matlab/simulink. International Journal of Scientific & Engineering Research, 5(10)
  • Moon, J.S., Lee, J.H., Ha, I.Y., Lee, T.K. and Won, C.Y. (2011). An efficient battery charging algorithm based on state-of-charge estimation for electric vehicle. International Conference on Electrical Machines and Systems (ICEMS) (pp. 1-6)
  • Park, M.Y., Chi, M.H., Park, J.H., Kim, H.G., Chun, T.W. and Nho, E.C. (2010). LCL-filter design for grid-connected PCS using total harmonic distortion and ripple attenuation factor. The International Power Electronics Conference
  • Pramanik, S. and Anwar, S. (2016). Electrochemical model based charge optimization for lithium-ion batteries. J. Power Sources, 313, 164-177
  • Qin, D., Li, J., Wang, T. and Zhang, D. (2019). Modeling and Simulating a Battery for an Electric Vehicle Based on Modelica, Automotive Innovation, 2, 169-177
  • Shyamala, S. and Lidha, O.R. Maggie. R. (2015). Control for grid connected electric vehicles in single and three-phase networks with on-board battery charging. International Journal of Advanced Research Trends in Engineering and Technology (IJARTET), 2(2)
  • Singh, B., Gairola, S., Singh, B.N., Chandra, A. and Al-Haddad, K. (2008). Multipulse AC-DC converters for improving power quality: A review. IEEE Transactions On Power Electronics, 23(1)
  • Sortomme, E., Hindi, M., MacPherson S. and Venkata, S. (2011). Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses. IEEE Trans. Smart Grid, 2(1), 198-205
  • Svensson, J. (2001). Synchronisation methods for grid-connected voltage source converters. Proc. Inst. Electr. Eng. - Gener. Transm. Distrib., 148(3), 229-235.
  • Teichmann, R., Malinowski, M. and Bernet, S. (2005). Evaluation of three-level rectifiers for low-voltage utility applications. IEEE Trans. Ind. Electron., 52(2), 471-481
  • Thiringer, T. and Haghbin, S. (2015). Power quality issues of a battery fast charging station for a fully-electric public transport system in Gothenburg City. Batteries, 1(1), 22-33
  • Tsang, K.M. and Chan, W.L. (2011). Current sensorless quick charger for lithiumion batteries. Energy Convers. Manag. 52, 1593-1595.
  • Tytelmaier, K., Husev, O., Veligorskyi, O. and Yershov, R. (2016). A review of non-isolated bidirectional DC-DC converters for energy storage systems. International Young Scientists Forum on Applied Physics and Engineering, Chernihiv National University of Technology (CNUT) Chernihiv, Ukraine

Elektrikli Araçlar İçin DC Hızlı Şarj İstasyonu Modellemesi ve Kontrolü

Year 2021, Volume: 11 Issue: 2, 680 - 704, 15.12.2021
https://doi.org/10.31466/kfbd.986040

Abstract

Dünyadaki çevresel sorunlardan dolayı elektrikli araçlara olan ihtiyaç artmaktadır. Elektrikli Araçlara geçiş devam ederken bu sürecin hızlanması çevresel sorunların azalmasında önemli rol oynamaktadır. Bu geçişin hızlanması için şarj ünitelerinin yaygınlaşması ve şarj süresinin azalması gerekmektedir. Şarj süresini azaltmak için daha yüksek güçlü şarj ünitelerine ihtiyaç vardır. Burada DA (Doğru Akım) hızlı şarj üniteleri devreye girmektedir. Bu çalışmada, elektrikli araçların şarj edilme süreci DA hızlı şarj ünitesinin batarya üzerindeki davranışı ve kontrol sistemlerinin MATLAB/Simulink ortamında modellemesi yapılmıştır. Tasarlanan model, elektrikli araçları şarj edecek elektrik güç sistemini temsil etmekte olup DA hızlı şarj sistemine dahil edilecek aynı anda birden fazla elektrikli araç için uygundur. Simülasyon DA seviye-2 şarj koşullarına göre entegre edilmiştir. Sistem modeli, 1 adet AA(Alternatif Akım)/DA dönüştürücü, 1 adet DA bara, Elektrikli araçları şarj edecek 2 adet DA/DA dönüştürücü ve birden fazla elektrikli araç bataryasından oluşmaktadır. Sistem modeli, bu bileşenlerin tasarım yöntemlerini (AA/DA-DA/DA tasarımı ve farklı kontrol stratejilerini) ve açıklamalarını içermektedir. Simülasyon sonucu, elektrik güç sistemindeki filtre, kontrol sistemi entegrasyonlarının güç sistemindeki olumsuz etkileri düzeltilerek daha kararlı davranışlar sergilediğini göstermektedir. Böylelikle ilerleyen süreçte hızla artacak olan DA hızlı şarj ünitelerinin güç sistemine entegrasyonu ve bu sürecin nasıl oluşturulması gerektiği hakkında olumlu çıktılar sunmaktadır.

References

  • Arruda, L. N., Silva, S. M. and Filho, B. (2001). PLL structures for utility connected systems. in Proc. IEEE-IAS Annu. Meeting, 4, 2655-2660.
  • Bhattacharjee, T., Jamil, M. and Jana, A. (2018). Designing a controller circuit for three phase inverter in PV application. 3rd International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT) (pp. 14-15)
  • Chen,G.J Liu,Y.H., Cheng,Y.S. and Pai, H.Y.(2021). A novel optimal charging algorithm for lithium-ion batteries based on model predictive control. MDIP, Energies.
  • Clement-Nyns, K., Haesen, E. and Driesen, J. (2010). The impact of charging plug-in hybrid electric vehicles on a residential distribution grid. Trans. Power Syst., 25(1), 371-380
  • Dannehl, J., Wessels, C. and Fuchs, F. (2009). Limitations of voltage-oriented pi current control of grid-connected PWM rectifiers with LCL filters. IEEE Trans. Ind. Electron., 56(2), 380-388
  • Deilami, S., Masoum, A., Moses, P. And Masoum, M. (2011). Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile. IEEE Trans. Smart Grid, 2(3), 456-467
  • Ferdous, S.M., Shoeb, M.A., Shafiullah, G. and Oninda, M.A.M. (2020). Parallel resonant converter for battery charging application. 9th International Conference on Power and Energy Systems. Perth, Australia.
  • Guan-Chyun, H. And Liang-Rui, C. (2001). Fuzzy controlled lithium-ion battery charge system with active state of charge controller. Trans. Ind. Electron. 48, 585-593.
  • Iqbal, A., Moinoddin, S., Ahmad, S., Ali, M., Sarwar, A. and Mude, K.N. (2018). Power Electronics Handbook (4th ed.). 15th Chapter - Multiphase Converters. Oxford, England: Butterworth-Heinemann (pp. 457-528)
  • Johnson, V.H. (2002). Battery performance models in ADVISOR. Journal of Power Sources, 110(2), 321-329
  • Kahlane, A.E.W.H., Hassaine, L. and Kherchi, M. (2014). LCL filter design for photovoltaic grid connected systems. Renewables Energies Review 1st SIENR (pp. 227-232)
  • Karlsson, P. and Svensson, J. (2003). DC bus voltage control for a distributed power system. IEEE Transactions On Power Electronics, 18(6)
  • Khajezadeh, A., Ahmadipour, A. and Motlagh, M. S. (2014). DC-DC converters via matlab/simulink. International Journal of Scientific & Engineering Research, 5(10)
  • Moon, J.S., Lee, J.H., Ha, I.Y., Lee, T.K. and Won, C.Y. (2011). An efficient battery charging algorithm based on state-of-charge estimation for electric vehicle. International Conference on Electrical Machines and Systems (ICEMS) (pp. 1-6)
  • Park, M.Y., Chi, M.H., Park, J.H., Kim, H.G., Chun, T.W. and Nho, E.C. (2010). LCL-filter design for grid-connected PCS using total harmonic distortion and ripple attenuation factor. The International Power Electronics Conference
  • Pramanik, S. and Anwar, S. (2016). Electrochemical model based charge optimization for lithium-ion batteries. J. Power Sources, 313, 164-177
  • Qin, D., Li, J., Wang, T. and Zhang, D. (2019). Modeling and Simulating a Battery for an Electric Vehicle Based on Modelica, Automotive Innovation, 2, 169-177
  • Shyamala, S. and Lidha, O.R. Maggie. R. (2015). Control for grid connected electric vehicles in single and three-phase networks with on-board battery charging. International Journal of Advanced Research Trends in Engineering and Technology (IJARTET), 2(2)
  • Singh, B., Gairola, S., Singh, B.N., Chandra, A. and Al-Haddad, K. (2008). Multipulse AC-DC converters for improving power quality: A review. IEEE Transactions On Power Electronics, 23(1)
  • Sortomme, E., Hindi, M., MacPherson S. and Venkata, S. (2011). Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses. IEEE Trans. Smart Grid, 2(1), 198-205
  • Svensson, J. (2001). Synchronisation methods for grid-connected voltage source converters. Proc. Inst. Electr. Eng. - Gener. Transm. Distrib., 148(3), 229-235.
  • Teichmann, R., Malinowski, M. and Bernet, S. (2005). Evaluation of three-level rectifiers for low-voltage utility applications. IEEE Trans. Ind. Electron., 52(2), 471-481
  • Thiringer, T. and Haghbin, S. (2015). Power quality issues of a battery fast charging station for a fully-electric public transport system in Gothenburg City. Batteries, 1(1), 22-33
  • Tsang, K.M. and Chan, W.L. (2011). Current sensorless quick charger for lithiumion batteries. Energy Convers. Manag. 52, 1593-1595.
  • Tytelmaier, K., Husev, O., Veligorskyi, O. and Yershov, R. (2016). A review of non-isolated bidirectional DC-DC converters for energy storage systems. International Young Scientists Forum on Applied Physics and Engineering, Chernihiv National University of Technology (CNUT) Chernihiv, Ukraine
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Aykut Fatih Güven 0000-0002-1071-9700

Salih Burak Akbaşak 0000-0003-2299-2656

Publication Date December 15, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Güven, A. F., & Akbaşak, S. B. (2021). DC Fast Charging Station Modeling and Control for Electric Vehicles. Karadeniz Fen Bilimleri Dergisi, 11(2), 680-704. https://doi.org/10.31466/kfbd.986040