In this study, the usage purposes of turbulators are mentioned. The advantages and disadvantages of two different turbulator models are examined. In addition, the working principle of the turbulator was examined to create the analysis conditions. Parts used in turbulators and their alternatives are introduced. The necessary engineering calculations for the analysis were made, the flow analysis to be applied to the turbulator was made and the results were interpreted. Flow simulation, one of the simulation plug-ins containing the SolidWorks commercial program, was used in the analysis. Also turbulator analysis; it was made to determine fluid pressure, fluid velocity, fluid temperature, turbulent energy, turbulent viscosity. The heat exchanger is approximately 1000 mm long. For the turbulators, copper material was chosen as its thermal conductivity is better than aluminum. In the study conducted with two types of turbulators; numerical simulation results were calculated as 4,771 Mpa, 20,15 0C, 211,168 J/kg, 14,81 Pa.s for the spring turbulator, while these values were calculated as 7,811 Mpa, 20,32 0C, 165,518 J/kg, 18,62 Pa.s for the propeller turbulator. In addition, it has been observed that the fluid velocities are 61.5 m/s for the spring turbulator and about 75 m/s for the propeller turbulator. Due to the continuous increase in turbulent energy and turbulent viscosity over time, it has been recommended to use a finned turbulator instead of a spring tube. When all these results are examined, it will open new ideas and fields of study to further improve the overall thermal-aerodynamic performance of turbulators. In this study, a design that will be an alternative to turbulator designs has been realized.
Bu çalışmada türbülatörlerin kullanım amaçlarından bahsedilmiştir. İki farklı türbülatör modelinin avantaj ve dezavantajları incelenmiştir. Ayrıca analiz koşullarını oluşturmak için türbülatörün çalışma prensibi incelenmiştir. Türbülatörlerde kullanılan parçalar ve alternatifleri tanıtılmıştır. Analiz için gerekli mühendislik hesapları yapılmış, türbülatöre uygulanacak akış analizi yapılmış ve sonuçlar yorumlanmıştır. Analizde SolidWorks ticari programını içeren simülasyon eklentilerinden biri olan akış simülasyonu kullanılmıştır. Ayrıca türbülatör analizi; akışkan basıncını, akışkan hızını, akışkan sıcaklığını, türbülans enerjisini, türbülans viskozitesini belirlemek için yapılmıştır. Isı eşanjörü yaklaşık 1000 mm uzunluğundadır. Türbülatörler için, termal iletkenliği alüminyumdan daha iyi olduğu için bakır malzeme seçilmiştir. İki tip türbülatör ile yapılan çalışmada; sayısal simülasyon sonuçları yaylı türbülatör için 4,771 Mpa, 20,15 0C, 211,168 J/kg, 14,81 Pa.s iken, pervaneli türbülatör için bu değerler 7,811 Mpa, 20,32 0C, 165,518 J/kg, 18,62 Pa.s olarak hesaplanmıştır. Ayrıca akışkan hızlarının yaylı türbülatör için 61,5 m/s, pervaneli türbülatör için yaklaşık 75 m/s olduğu gözlemlenmiştir. Zaman içinde türbülans enerjisi ve türbülans viskozitesindeki sürekli artış nedeniyle, yaylı boru yerine kanatlı türbülatör kullanılması tavsiye edilmiştir. Tüm bu sonuçlar incelendiğinde, türbülatörlerin genel termal-aerodinamik performansını daha da iyileştirmek için yeni fikirler ve çalışma alanları açacaktır. Bu çalışmada türbülatör tasarımlarına alternatif olacak bir tasarım gerçekleştirilmiştir.
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Early Pub Date | June 15, 2022 |
Publication Date | June 15, 2022 |
Published in Issue | Year 2022 Volume: 12 Issue: 1 |
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.