Research Article
BibTex RIS Cite

Mikroekstraksiyon Yöntemi ile Su Numunelerinde Paladyumun Spektrofotometrik Tayini

Year 2022, Volume: 12 Issue: 1, 285 - 295, 15.06.2022
https://doi.org/10.31466/kfbd.1039969

Abstract

Bu çalışmada, Pd2+ iyonlarının iyodür (I-) ile PdI42- kompleksi oluşturarak, heksadesiltrimetilamonyum bromür (CTAB) yardımıyla kloroform fazına taşındığı ve spektrofotometre ile tayin edildiği bir mikroekstraksiyon yöntemi geliştirilmiştir. Ekstraksiyon verimliliğini etkileyen, pH, heksadesiltrimetilamonyum bromür konsantrasyonu, potasyum iyodür konsantrasyonu, kloroform hacmi ve yabancı iyon etkisi gibi deneysel parametreler optimize edilmiştir. Optimize edilen şartlarda paladyum için tayin sınırı 19 µg L-1, bağıl standart sapma %2,1 ve zenginleştirme faktörü ise 10 olarak bulunmuştur. Geliştirilen metodun doğruluğu, gerçek numunelere ekleme/geri kazanım testleriyle belirlenmiştir. Bu metot %94-106 geri kazanım değerleriyle, dere ve deniz suyu numunelerinde paladyum ekstraksiyonu ve tayini için başarıyla uygulanmıştır.

Supporting Institution

Giresun Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir

Project Number

Proje no: 250221-24

References

  • Abdi, K., Ezoddin, M., Pirooznia, N. (2020). Temperature-controlled liquid-liquid microextraction using a biocompatible hydrophobic deep eutectic solvent for microextraction of palladium from catalytic converter and road dust samples prior to ETAAS determination, Microchemical Journal, 157, 104999.
  • Andruch, V., Kocúrová, L., Balogh, I. S., and Škrlíková, J. (2012). Recent advances in coupling single-drop and dispersive liquid–liquid microextraction with UV–vis spectrophotometry and related detection techniques, Microchemical Journal, 102, 1-10.
  • Bengtsson, G. (2019). Hypothetical Thresholds for Effects of Platinum Group Elements. Environment and Pollution, 8, 39-53.
  • Chen, T., Zhao, C.-Q., and Han, L.-B. (2018). Hydrophosphorylation of Alkynes Catalyzed by Palladium: Generality and Mechanism. Journal of the American Chemical Society, 140(8), 3139-3155.
  • Crosera, M., Mauro, M., Bovenzi, M., Adami, G., Baracchini, E., Maina, G., Filon, F. L. (2018). In vitro permeation of palladium powders through intact and damaged human skin. Toxicology Letters, 287, 108-112.
  • Dadfarnia, S., Shabani, A. M. H., and Amirkavei, M. (2013). Ultrasound-assisted emulsification-solidified floating organic drop microextraction combined with flow injection-flame atomic absorption spectrometry for the determination of palladium in water samples. Turkish Journal of Chemistry, 37, 746-755.
  • Ezoddin, M., Abdi, K., Lamei, N. (2016). Development of air assisted liquid phase microextraction based on switchable-hydrophilicity solvent for the determination of palladium in environmental samples. Talanta, 153, 247-252.
  • Fanelli, M., Formica, M., Fusi, V., Giorgi, L., Micheloni, M., and Paoli, P. (2016). New trends in platinum and palladium complexes as antineoplastic agents. Coordination Chemistry Reviews, 310, 41-79.
  • Gao, R., and Zhang, N. (2015). ICP-OES Determination of Palladium in Palladium Jewellery Alloys Using Yttrium Internal Standard. Atomic Spectroscopy, 36(5), 216-220.
  • Kasa, N. A., Sel, S., Özcan, B. Ç., Bakırdere, Sezgin. (2019). Determination of palladium in soil samples by slotted quartz tube-flame atomic absorption spectrophotometry after vortex-assisted ligandless preconcentration with magnetic nanoparticle-based dispersive solid-phase microextraction. Environmental Monitoring and Assessment. 191, 692.
  • Khayatian, G., and Sharifi, K. (2014). Development of a dispersive liquid–liquid microextraction method for determination of palladium in water samples using dicyclohexano-18- crown-6 as extracting agent. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 79, 185-191.
  • Kocúrová, L., Balogh, I. S., Šandrejová, J., and Andruch, V. (2012). Recent advances in dispersive liquid-liquid microextraction using organic solvents lighter than water. A review. Microchemical Journal, 102, 11-17.
  • Liang, P., Zhao, E., and Li, F. (2009). Dispersive liquid–liquid microextraction preconcentration of palladium in water samples and determination by graphite furnace atomic absorption spectrometry, Talanta, 77, 1854-1857.
  • Mohammadi, S. Z., Afzali, D., Taher, M. A., and Baghelani, Y. M. (2010). Determination of trace amounts of palladium by flame atomic absorption spectrometry after ligandless-dispersive liquid-liquid microextraction. Microchimica Acta, 168, 123-128.
  • Okoye, C. O. B., Chukwuneke, A. M., Ekere, N. R., and Ihedioha, J. N. (2013). Simultaneous ultraviolet-visible (UV-VIS) spectrophotometric quantitative determination of Pb, Hg, Cd, As and Ni ions in aqueous solutions using cyanidin as a chromogenic reagent. International Journal of Physical Sciences, 8(3), 98-102.
  • Pouyan, M., Bagherian, G., and Goudarzi, N. (2016). Determination of ultra-trace palladium (II) in water, soil, and food samples by dispersive liquid‐liquid microextraction-atomic absorption spectrometry using 2-mercaptobenzimidazole as a complexing agent. Microchemical Journal, 127, 46-51.
  • Rezaee, M., Yamini, Y., and Faraji, M. (2010). Evolution of dispersive liquid-liquid microextraction method. Journal of Chromatography A, 1217, 2342-2357.
  • Savignan, L., Faucher, S., Chery, P., and Lespes, G. (2021). Platinum group elements contamination in soils: Review of the current state. Chemosphere, 271, 129517.
  • Shamsipur, M., Ramezani, M., and Sadeghi, M. (2009). Preconcentration and determination of ultra trace amounts of palladium in water samples by dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry. Microchim Acta, 166, 235-242.
  • Shokoufia, N., Shemirani, F., and Assadi Y. (2007). Fiber optic-linear array detection spectrophotometry in combination with dispersive liquid–liquid microextraction for simultaneous preconcentration and determination of palladium and cobalt. Analytica Chimica Acta, 597, 349-356.
  • Suoranta, T., Bokhari, S. N. H., Meisel, T., Niemelä, M., and Perämäki, P. (2016). Elimination of Interferences in the Determination of Palladium, Platinum and Rhodium Mass Fractions in Moss Samples using ICP-MS/MS. Geostandards and Geoanalytical Research, 40(4), 559-569.
  • Taher, M. A., Daliri, Z., and Fazelirad, H. (2014). Simultaneous extraction and preconcentration of copper, silver and palladium with modified alumina and their determination by electrothermal atomic absorption spectrometry, Chinese Chemical Letters, 25(4), 649-654.
  • Vaezzadeh, M., Shemirani, F., and Majidi, B. (2010). Microextraction technique based on ionic liquid for preconcentration and determination of palladium in food additive, sea water, tea and biological samples, Food and Chemical Toxicology, 48, 1455-1460.
  • Yan, H., and Wang, H. (2013). Recent development and applications of dispersive liquid-liquid microextraction, Journal of Chromatography A, 1295, 1-15.
  • Zang, X.-H., Wu, Q.-H., Zhang, M.-Y., XI, G.-H., and Wang, Z. (2009). Developments of Dispersive Liquid-Liquid Microextraction Technique. Chinese Journal of Analytical Chemistry, 37(2), 161-168.

Spectrophotometric Determination of Palladium in Water Samples by Microextraction Procedure

Year 2022, Volume: 12 Issue: 1, 285 - 295, 15.06.2022
https://doi.org/10.31466/kfbd.1039969

Abstract

A microextraction method has been developed for palladium based on the formation of an ion associate (PdI42-) between Pd2+ and iodide (I-), with the aid of hexadecyltrimethylammonium bromide as ligand, which is extractable to chloroform and determined by a spectrophotometer. Experimental parameters affecting the extraction efficiency such as pH, hexadecyltrimethylammonium bromide concentration, potassium iodide concentration, chloroform volume and foreign ion effect were optimized. The detection limit for palladium under optimized conditions was 19 µg L-1, the relative standard deviation was 2.1%, and the enrichment factor was 10. The accuracy of the developed method was determined by addition/recovery tests to real samples. With 94-106% recovery values, this method has been successfully applied for the extraction and determination of palladium in stream and sea water samples.

Project Number

Proje no: 250221-24

References

  • Abdi, K., Ezoddin, M., Pirooznia, N. (2020). Temperature-controlled liquid-liquid microextraction using a biocompatible hydrophobic deep eutectic solvent for microextraction of palladium from catalytic converter and road dust samples prior to ETAAS determination, Microchemical Journal, 157, 104999.
  • Andruch, V., Kocúrová, L., Balogh, I. S., and Škrlíková, J. (2012). Recent advances in coupling single-drop and dispersive liquid–liquid microextraction with UV–vis spectrophotometry and related detection techniques, Microchemical Journal, 102, 1-10.
  • Bengtsson, G. (2019). Hypothetical Thresholds for Effects of Platinum Group Elements. Environment and Pollution, 8, 39-53.
  • Chen, T., Zhao, C.-Q., and Han, L.-B. (2018). Hydrophosphorylation of Alkynes Catalyzed by Palladium: Generality and Mechanism. Journal of the American Chemical Society, 140(8), 3139-3155.
  • Crosera, M., Mauro, M., Bovenzi, M., Adami, G., Baracchini, E., Maina, G., Filon, F. L. (2018). In vitro permeation of palladium powders through intact and damaged human skin. Toxicology Letters, 287, 108-112.
  • Dadfarnia, S., Shabani, A. M. H., and Amirkavei, M. (2013). Ultrasound-assisted emulsification-solidified floating organic drop microextraction combined with flow injection-flame atomic absorption spectrometry for the determination of palladium in water samples. Turkish Journal of Chemistry, 37, 746-755.
  • Ezoddin, M., Abdi, K., Lamei, N. (2016). Development of air assisted liquid phase microextraction based on switchable-hydrophilicity solvent for the determination of palladium in environmental samples. Talanta, 153, 247-252.
  • Fanelli, M., Formica, M., Fusi, V., Giorgi, L., Micheloni, M., and Paoli, P. (2016). New trends in platinum and palladium complexes as antineoplastic agents. Coordination Chemistry Reviews, 310, 41-79.
  • Gao, R., and Zhang, N. (2015). ICP-OES Determination of Palladium in Palladium Jewellery Alloys Using Yttrium Internal Standard. Atomic Spectroscopy, 36(5), 216-220.
  • Kasa, N. A., Sel, S., Özcan, B. Ç., Bakırdere, Sezgin. (2019). Determination of palladium in soil samples by slotted quartz tube-flame atomic absorption spectrophotometry after vortex-assisted ligandless preconcentration with magnetic nanoparticle-based dispersive solid-phase microextraction. Environmental Monitoring and Assessment. 191, 692.
  • Khayatian, G., and Sharifi, K. (2014). Development of a dispersive liquid–liquid microextraction method for determination of palladium in water samples using dicyclohexano-18- crown-6 as extracting agent. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 79, 185-191.
  • Kocúrová, L., Balogh, I. S., Šandrejová, J., and Andruch, V. (2012). Recent advances in dispersive liquid-liquid microextraction using organic solvents lighter than water. A review. Microchemical Journal, 102, 11-17.
  • Liang, P., Zhao, E., and Li, F. (2009). Dispersive liquid–liquid microextraction preconcentration of palladium in water samples and determination by graphite furnace atomic absorption spectrometry, Talanta, 77, 1854-1857.
  • Mohammadi, S. Z., Afzali, D., Taher, M. A., and Baghelani, Y. M. (2010). Determination of trace amounts of palladium by flame atomic absorption spectrometry after ligandless-dispersive liquid-liquid microextraction. Microchimica Acta, 168, 123-128.
  • Okoye, C. O. B., Chukwuneke, A. M., Ekere, N. R., and Ihedioha, J. N. (2013). Simultaneous ultraviolet-visible (UV-VIS) spectrophotometric quantitative determination of Pb, Hg, Cd, As and Ni ions in aqueous solutions using cyanidin as a chromogenic reagent. International Journal of Physical Sciences, 8(3), 98-102.
  • Pouyan, M., Bagherian, G., and Goudarzi, N. (2016). Determination of ultra-trace palladium (II) in water, soil, and food samples by dispersive liquid‐liquid microextraction-atomic absorption spectrometry using 2-mercaptobenzimidazole as a complexing agent. Microchemical Journal, 127, 46-51.
  • Rezaee, M., Yamini, Y., and Faraji, M. (2010). Evolution of dispersive liquid-liquid microextraction method. Journal of Chromatography A, 1217, 2342-2357.
  • Savignan, L., Faucher, S., Chery, P., and Lespes, G. (2021). Platinum group elements contamination in soils: Review of the current state. Chemosphere, 271, 129517.
  • Shamsipur, M., Ramezani, M., and Sadeghi, M. (2009). Preconcentration and determination of ultra trace amounts of palladium in water samples by dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry. Microchim Acta, 166, 235-242.
  • Shokoufia, N., Shemirani, F., and Assadi Y. (2007). Fiber optic-linear array detection spectrophotometry in combination with dispersive liquid–liquid microextraction for simultaneous preconcentration and determination of palladium and cobalt. Analytica Chimica Acta, 597, 349-356.
  • Suoranta, T., Bokhari, S. N. H., Meisel, T., Niemelä, M., and Perämäki, P. (2016). Elimination of Interferences in the Determination of Palladium, Platinum and Rhodium Mass Fractions in Moss Samples using ICP-MS/MS. Geostandards and Geoanalytical Research, 40(4), 559-569.
  • Taher, M. A., Daliri, Z., and Fazelirad, H. (2014). Simultaneous extraction and preconcentration of copper, silver and palladium with modified alumina and their determination by electrothermal atomic absorption spectrometry, Chinese Chemical Letters, 25(4), 649-654.
  • Vaezzadeh, M., Shemirani, F., and Majidi, B. (2010). Microextraction technique based on ionic liquid for preconcentration and determination of palladium in food additive, sea water, tea and biological samples, Food and Chemical Toxicology, 48, 1455-1460.
  • Yan, H., and Wang, H. (2013). Recent development and applications of dispersive liquid-liquid microextraction, Journal of Chromatography A, 1295, 1-15.
  • Zang, X.-H., Wu, Q.-H., Zhang, M.-Y., XI, G.-H., and Wang, Z. (2009). Developments of Dispersive Liquid-Liquid Microextraction Technique. Chinese Journal of Analytical Chemistry, 37(2), 161-168.
There are 25 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Zekeriyya Bahadır 0000-0002-7035-1258

Project Number Proje no: 250221-24
Early Pub Date June 15, 2022
Publication Date June 15, 2022
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Bahadır, Z. (2022). Mikroekstraksiyon Yöntemi ile Su Numunelerinde Paladyumun Spektrofotometrik Tayini. Karadeniz Fen Bilimleri Dergisi, 12(1), 285-295. https://doi.org/10.31466/kfbd.1039969