Research Article
BibTex RIS Cite

Fındık Kabuğunun Torrefaksiyon ve Yanma davranışının İncelenmesi

Year 2022, Volume: 12 Issue: 1, 51 - 65, 15.06.2022
https://doi.org/10.31466/kfbd.974829

Abstract

Torrefaksiyon, günümüzün güç sistemlerine dahil edilebilecek kömür benzeri katılar elde etmek için umut verici bir tekniktir. Bu çalışmada, fındık kabuğunun tel örgü sepetli dikey bir fırın ve gerekli ekipmanlar kullanılarak torrefaksiyonu ve yanma davranışı incelenmiştir. Torrefaksiyon deneyleri, sepet içinde azot akışı altında ve sırasıyla hafif, orta ve şiddetli koşullara karşılık gelen 200, 240 ve 280 oC sıcaklıklarda poli-parçacık yatağı olarak yapılmıştır. Bununla birlikte, yanma deneyleri, 550, 650 ve 750 oC sıcaklıklarda doğal konveksiyon hava akımı altında yanan tek bir ham veya torrefiye peletin kütlesi kaydedilerek gerçekleştirilmiştir. Katı ürün veriminin torrefaksiyon sıcaklığı ile azaldığı, katı ürünün sabit karbon ve üst ısı değerinin (ÜID) arttığı görüldü. Torrefiye kabukların uçucu tutuşma süreleri nem içeriklerinden etkilenmiştir. Bu etki, peletlerin daha hızlı ısıtılması nedeniyle artan sıcaklıklarla azaldı. Torrefiye peletlerin karbon yanma hızları genellikle ham peletlerinkinden daha düşüktü ve yanma sıcaklığının yanı sıra torrefaksiyon şiddeti ile azaldı.

Supporting Institution

Fırat Üniversitesi

Project Number

MF.19.16

Thanks

Fırat Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından Proje No: MF.19.16 kapsamında bu çalışmaya verdikleri destek için teşekkür ederiz.

References

  • Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., and Levin, D. B., (2011). Biomass Pretreatment: Fundamentals toward application. Biotechnology Advances, 29, 675-685. https://doi.org/10.1016/j.biotechadv.2011.05.005
  • Arias Rozada, B., Pevida García, C., Fermoso Domínguez, J., González Plaza, M., Rubiera González, F., and Pis Martínez, J. J., (2008). Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology, 89, 169-175. https://doi.org/10.1016/j.fuproc.2007.09.002
  • Arshanitsa, A., Akishin, Y., Zile, E., Dizhbite, T., Solodovnik, V., and Telysheva, G. (2016). Microwave treatment combined with conventional heating of plant biomass pellets in a rotated reactor as a high rate process for solid biofuel manufacture. Renewable Energy, 91, 386-396. https://doi.org/10.1016/j.renene.2016.01.080
  • Basu, P., Sadhukhan, A. K., Gupta, P., Rao, S., Dhungana, A., and Acharya, B., (2014). An experimental and theoretical investigation on torrefaction of a large wet wood particle. Bioresource technology, 159, 215-222. https://doi.org/10.1016/j.biortech.2014.02.105
  • Bilgic, E., Yaman, S., Haykiri-Acma, H., and Kucukbayrak, S.,(2016). Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?. Bioresource technology, 200, 201-207. https://doi.org/10.1016/j.biortech.2015.10.032
  • Chen, W. H., and Kuo, P. C., (2010). A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy, 35, 2580-2586. https://doi.org/10.1016/j.energy.2010.02.054
  • Chen, W. H., Ye, S. C., and Sheen, H. K. (2012). Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresource technology, 118, 195-203. https://doi.org/10.1016/j.biortech.2012.04.101
  • Chen, W. H., Peng, J., and Bi, X. T., (2015a). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847-866. https://doi.org/10.1016/j.rser.2014.12.039
  • Chen W.H., Liu, S.H., Juang, T.T., Tsai, C.M., Zhuang, Y.Q., (2015b). Characterization of solid and liquid products from bamboo torrefaction. Applied Energy, 160, 829–835. https://doi.org/10.1016/j.apenergy.2015.03.022
  • Dudyński, M., van Dyk, J. C., Kwiatkowski, K., and Sosnowska, M., (2015). Biomass gasification: Influence of torrefaction on syngas production and tar formation. Fuel processing technology, 131, 203-212. https://doi.org/10.1016/j.fuproc.2014.11.018
  • García, R., Pizarro, C., Lavín, A.G., Bueno, J.L. (2014). Spanish biofuels heating value estimation. Part II: Proximate analysis data. Fuel, 117, 1139–1147. https://doi.org/10.1016/j.fuel.2013.08.049
  • Haykiri-Acma, H., (2006). The role of particle size in the non-isothermal pyrolysis of hazelnut shell. Journal of analytical and applied pyrolysis, 75, 211-216. https://doi.org/10.1016/j.jaap.2005.06.002
  • Haykiri-Acma, H., and Yaman, S., (2007). Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis. Fuel, 86, 373-380. https://doi.org/10.1016/j.fuel.2006.07.005
  • Haykiri-Acma, H., and Yaman, S., (2008). Effect of co-combustion on the burnout of lignite/biomass blends: a Turkish case study. Waste Management, 28, 2077-2084. https://doi.org/10.1016/j.wasman.2007.08.028
  • Haykiri-Acma, H., Baykan, A., Yaman, S., and Kucukbayrak, S., (2013). Effects of fragmentation and particle size on the fuel properties of hazelnut shells. Fuel, 112, 326-330. https://doi.org/10.1016/j.fuel.2013.05.051
  • Haykiri-Acma, H., Yaman, S., and Kucukbayrak, S., (2017). Effects of torrefaction on lignin-rich biomass (hazelnut shell): Structural variations. Journal of Renewable and Sustainable Energy, 9, 063102. https://doi.org/10.1063/1.4997824
  • Kopczyński, M., Lasek, J. A., Iluk, A., and Zuwała, J., (2017). The co-combustion of hard coal with raw and torrefied biomasses (willow (Salix viminalis), olive oil residue and waste wood from furniture manufacturing). Energy, 140, 1316-1325. https://doi.org/10.1016/j.energy.2017.04.036
  • Kulah, G., (2010). Validation of a FBC model for co-firing of hazelnut shell with lignite against experimental data, Experimental Thermal and Fluid Science, 34, 646–655. https://doi.org/10.1016/j.expthermflusci.2009.12.006
  • Kumar, L., Koukoulas, A. A., Mani, S., and Satyavolu, J., (2017). Integrating torrefaction in the wood pellet industry: A Critical Review. Energy & Fuels, 31, 37-54. https://doi.org/10.1021/acs.energyfuels.6b02803
  • Li, H., Liu, X., Legros, R., Bi, X. T., Lim, C. J., and Sokhansanj, S., (2012). Pelletization of torrefied sawdust and properties of torrefied pellets. Applied Energy, 93, 680-685. https://doi.org/10.1016/j.apenergy.2012.01.002
  • Mun, T. Y., Tumsa, T. Z., Lee, U., & Yang, W. (2016). Performance evaluation of co-firing various kinds of biomass with low rank coals in a 500 MWe coal-fired power plant. Energy, 115, 954-962. https://doi.org/10.1016/j.energy.2016.09.060
  • Prins, M.J., Ptasinski, K.J., and Janssen, F.J.J.G., (2006). Torrefaction of Wood Part 1. Weight Loss Kinetics. Journal of Analytical and Applied Pyrolysis , 77, 28-34. https://doi.org/10.1016/j.jaap.2006.01.002
  • Ren, X., Sun, R., Meng, X., Vorobiev, N., Schiemann, M., and Levendis, Y. A., (2017). Carbon, sulfur and nitrogen oxide emissions from combustion of pulverized raw and torrefied biomass. Fuel, 188, 310-323. https://doi.org/10.1016/j.fuel.2016.10.017
  • Rokni, E., Ren, X., Panahi, A. ,and Levendis, Y. A., (2018). Emissions of SO2, NOx, CO2, and HCl from Co-firing of coals with raw and torrefied biomass fuels. Fuel, 211, 363-374. https://doi.org/10.1016/j.fuel.2017.09.049
  • Rousset, P., Macedo, L., Commandré, J. M., and Moreira, A., (2012). Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. Journal of Analytical and Applied Pyrolysis, 96, 86-91. https://doi.org/10.1016/j.jaap.2012.03.009
  • Sami, M., Annamalai, K., and Wooldridge, M., (2001). Co-firing of coal and biomass fuel blends. Progress in energy and combustion science, 27, 171-214. https://doi.org/10.1016/S0360-1285(00)00020-4
  • Uslu, A., Faaij, A. P., and Bergman, P. C., (2008). Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy, 33, 1206-1223. https://doi.org/10.1016/j.energy.2008.03.007
  • Valix, M., Katyal, S., and Cheung, W.H., (2017). Combustion of thermochemically torrefied sugar cane bagasse. Bioresource Technology, 223, 202–209. https://doi.org/10.1016/j.biortech.2016.10.053
  • Yaman, S., (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy conversion and management, 45, 651-671. https://doi.org/10.1016/S0196-8904(03)00177-8
  • Yılgın, M., Duranay, N., and Pehlivan, D., (2019). Torrefaction and combustion behaviour of beech wood pellets. Journal of Thermal Analysis and Calorimetry, 138, 819-826. https://doi.org/10.1007/s10973-019-08250-4
  • Yilgin, M., and Pehlivan, D., (2009). Volatiles and Char Combustion Rates of Demineralised Lignite and Wood Blends, Applied Energy, 86, 1179-1186. https://doi.org/10.1016/j.apenergy.2008.11.002
  • Yilgin, M., Yildirim, S., and Pehlivan, D., (2021a). Combustion of hazelnut shell-lignite blends in poly-particulate beds. Biomass Conversion and Biorefinery, Basımda. https://doi.org/10.1007/s13399-021-01572-0
  • Yilgin, M., Hoş, B., and Pehlivan, D., (2021b). Combustion of torrefied pellets of furniture work dusts as blends with lignite. Journal of Energy Resources Technology, 143, 102301. https://doi.org/10.1115/1.4049272
  • Yu, S., Park, J., Kim, M., Kim, H., Ryu, C., Lee, Y., and Jeong, Y. G., (2019). Improving energy density and grindability of wood pellets by dry torrefaction. Energy & Fuels, 33, 8632-8639. https://doi.org/10.1021/acs.energyfuels.9b01086
  • URL-1- https://www.tarimorman.gov.tr/ (13.04.2020)

Investigation of Torrefaction and Combustion Behavior of Hazelnut Shell

Year 2022, Volume: 12 Issue: 1, 51 - 65, 15.06.2022
https://doi.org/10.31466/kfbd.974829

Abstract

Torrefaction is a promising technique to obtain coal-like solids which can be incorporated into today’s power systems. In this study, torrefaction of hazelnut shell and their combustion behaviour were investigated using a vertical furnace with a wire mesh basket and necessary equipments. Torrefaction experiments were made as a poly-particles bed in the basket under nitrogen flow and at 200, 240 and 280 oC temperatures corresponding to light, mild and severe conditions, respectively. It was observed that the solid product yield decreased with the torrefaction temperature and the fixed carbon and HHV of the solid product increased. Combustion experiments, however, were carried out by recording mass of single raw or torrefied burning pellet under natural convection airflow at 550, 650 and 750 oC temperatures. Volatiles ignition times of torrefied shells were affected by their moisture contents. This effect lessened with increasing temperatures due to faster heating of pellets. Torrefied pellets of carbon combustion rates were generally lower than those of raw pellets and decreased with combustion temperature as well as torrefaction severity.

Project Number

MF.19.16

References

  • Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., and Levin, D. B., (2011). Biomass Pretreatment: Fundamentals toward application. Biotechnology Advances, 29, 675-685. https://doi.org/10.1016/j.biotechadv.2011.05.005
  • Arias Rozada, B., Pevida García, C., Fermoso Domínguez, J., González Plaza, M., Rubiera González, F., and Pis Martínez, J. J., (2008). Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology, 89, 169-175. https://doi.org/10.1016/j.fuproc.2007.09.002
  • Arshanitsa, A., Akishin, Y., Zile, E., Dizhbite, T., Solodovnik, V., and Telysheva, G. (2016). Microwave treatment combined with conventional heating of plant biomass pellets in a rotated reactor as a high rate process for solid biofuel manufacture. Renewable Energy, 91, 386-396. https://doi.org/10.1016/j.renene.2016.01.080
  • Basu, P., Sadhukhan, A. K., Gupta, P., Rao, S., Dhungana, A., and Acharya, B., (2014). An experimental and theoretical investigation on torrefaction of a large wet wood particle. Bioresource technology, 159, 215-222. https://doi.org/10.1016/j.biortech.2014.02.105
  • Bilgic, E., Yaman, S., Haykiri-Acma, H., and Kucukbayrak, S.,(2016). Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?. Bioresource technology, 200, 201-207. https://doi.org/10.1016/j.biortech.2015.10.032
  • Chen, W. H., and Kuo, P. C., (2010). A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy, 35, 2580-2586. https://doi.org/10.1016/j.energy.2010.02.054
  • Chen, W. H., Ye, S. C., and Sheen, H. K. (2012). Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresource technology, 118, 195-203. https://doi.org/10.1016/j.biortech.2012.04.101
  • Chen, W. H., Peng, J., and Bi, X. T., (2015a). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847-866. https://doi.org/10.1016/j.rser.2014.12.039
  • Chen W.H., Liu, S.H., Juang, T.T., Tsai, C.M., Zhuang, Y.Q., (2015b). Characterization of solid and liquid products from bamboo torrefaction. Applied Energy, 160, 829–835. https://doi.org/10.1016/j.apenergy.2015.03.022
  • Dudyński, M., van Dyk, J. C., Kwiatkowski, K., and Sosnowska, M., (2015). Biomass gasification: Influence of torrefaction on syngas production and tar formation. Fuel processing technology, 131, 203-212. https://doi.org/10.1016/j.fuproc.2014.11.018
  • García, R., Pizarro, C., Lavín, A.G., Bueno, J.L. (2014). Spanish biofuels heating value estimation. Part II: Proximate analysis data. Fuel, 117, 1139–1147. https://doi.org/10.1016/j.fuel.2013.08.049
  • Haykiri-Acma, H., (2006). The role of particle size in the non-isothermal pyrolysis of hazelnut shell. Journal of analytical and applied pyrolysis, 75, 211-216. https://doi.org/10.1016/j.jaap.2005.06.002
  • Haykiri-Acma, H., and Yaman, S., (2007). Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis. Fuel, 86, 373-380. https://doi.org/10.1016/j.fuel.2006.07.005
  • Haykiri-Acma, H., and Yaman, S., (2008). Effect of co-combustion on the burnout of lignite/biomass blends: a Turkish case study. Waste Management, 28, 2077-2084. https://doi.org/10.1016/j.wasman.2007.08.028
  • Haykiri-Acma, H., Baykan, A., Yaman, S., and Kucukbayrak, S., (2013). Effects of fragmentation and particle size on the fuel properties of hazelnut shells. Fuel, 112, 326-330. https://doi.org/10.1016/j.fuel.2013.05.051
  • Haykiri-Acma, H., Yaman, S., and Kucukbayrak, S., (2017). Effects of torrefaction on lignin-rich biomass (hazelnut shell): Structural variations. Journal of Renewable and Sustainable Energy, 9, 063102. https://doi.org/10.1063/1.4997824
  • Kopczyński, M., Lasek, J. A., Iluk, A., and Zuwała, J., (2017). The co-combustion of hard coal with raw and torrefied biomasses (willow (Salix viminalis), olive oil residue and waste wood from furniture manufacturing). Energy, 140, 1316-1325. https://doi.org/10.1016/j.energy.2017.04.036
  • Kulah, G., (2010). Validation of a FBC model for co-firing of hazelnut shell with lignite against experimental data, Experimental Thermal and Fluid Science, 34, 646–655. https://doi.org/10.1016/j.expthermflusci.2009.12.006
  • Kumar, L., Koukoulas, A. A., Mani, S., and Satyavolu, J., (2017). Integrating torrefaction in the wood pellet industry: A Critical Review. Energy & Fuels, 31, 37-54. https://doi.org/10.1021/acs.energyfuels.6b02803
  • Li, H., Liu, X., Legros, R., Bi, X. T., Lim, C. J., and Sokhansanj, S., (2012). Pelletization of torrefied sawdust and properties of torrefied pellets. Applied Energy, 93, 680-685. https://doi.org/10.1016/j.apenergy.2012.01.002
  • Mun, T. Y., Tumsa, T. Z., Lee, U., & Yang, W. (2016). Performance evaluation of co-firing various kinds of biomass with low rank coals in a 500 MWe coal-fired power plant. Energy, 115, 954-962. https://doi.org/10.1016/j.energy.2016.09.060
  • Prins, M.J., Ptasinski, K.J., and Janssen, F.J.J.G., (2006). Torrefaction of Wood Part 1. Weight Loss Kinetics. Journal of Analytical and Applied Pyrolysis , 77, 28-34. https://doi.org/10.1016/j.jaap.2006.01.002
  • Ren, X., Sun, R., Meng, X., Vorobiev, N., Schiemann, M., and Levendis, Y. A., (2017). Carbon, sulfur and nitrogen oxide emissions from combustion of pulverized raw and torrefied biomass. Fuel, 188, 310-323. https://doi.org/10.1016/j.fuel.2016.10.017
  • Rokni, E., Ren, X., Panahi, A. ,and Levendis, Y. A., (2018). Emissions of SO2, NOx, CO2, and HCl from Co-firing of coals with raw and torrefied biomass fuels. Fuel, 211, 363-374. https://doi.org/10.1016/j.fuel.2017.09.049
  • Rousset, P., Macedo, L., Commandré, J. M., and Moreira, A., (2012). Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. Journal of Analytical and Applied Pyrolysis, 96, 86-91. https://doi.org/10.1016/j.jaap.2012.03.009
  • Sami, M., Annamalai, K., and Wooldridge, M., (2001). Co-firing of coal and biomass fuel blends. Progress in energy and combustion science, 27, 171-214. https://doi.org/10.1016/S0360-1285(00)00020-4
  • Uslu, A., Faaij, A. P., and Bergman, P. C., (2008). Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy, 33, 1206-1223. https://doi.org/10.1016/j.energy.2008.03.007
  • Valix, M., Katyal, S., and Cheung, W.H., (2017). Combustion of thermochemically torrefied sugar cane bagasse. Bioresource Technology, 223, 202–209. https://doi.org/10.1016/j.biortech.2016.10.053
  • Yaman, S., (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy conversion and management, 45, 651-671. https://doi.org/10.1016/S0196-8904(03)00177-8
  • Yılgın, M., Duranay, N., and Pehlivan, D., (2019). Torrefaction and combustion behaviour of beech wood pellets. Journal of Thermal Analysis and Calorimetry, 138, 819-826. https://doi.org/10.1007/s10973-019-08250-4
  • Yilgin, M., and Pehlivan, D., (2009). Volatiles and Char Combustion Rates of Demineralised Lignite and Wood Blends, Applied Energy, 86, 1179-1186. https://doi.org/10.1016/j.apenergy.2008.11.002
  • Yilgin, M., Yildirim, S., and Pehlivan, D., (2021a). Combustion of hazelnut shell-lignite blends in poly-particulate beds. Biomass Conversion and Biorefinery, Basımda. https://doi.org/10.1007/s13399-021-01572-0
  • Yilgin, M., Hoş, B., and Pehlivan, D., (2021b). Combustion of torrefied pellets of furniture work dusts as blends with lignite. Journal of Energy Resources Technology, 143, 102301. https://doi.org/10.1115/1.4049272
  • Yu, S., Park, J., Kim, M., Kim, H., Ryu, C., Lee, Y., and Jeong, Y. G., (2019). Improving energy density and grindability of wood pellets by dry torrefaction. Energy & Fuels, 33, 8632-8639. https://doi.org/10.1021/acs.energyfuels.9b01086
  • URL-1- https://www.tarimorman.gov.tr/ (13.04.2020)
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Bedriye Aydemir This is me 0000-0002-5592-2585

Melek Yılgın 0000-0002-4177-8025

Project Number MF.19.16
Early Pub Date June 15, 2022
Publication Date June 15, 2022
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Aydemir, B., & Yılgın, M. (2022). Fındık Kabuğunun Torrefaksiyon ve Yanma davranışının İncelenmesi. Karadeniz Fen Bilimleri Dergisi, 12(1), 51-65. https://doi.org/10.31466/kfbd.974829