Research Article
BibTex RIS Cite

Tandem Kaynak İşleminde Sıcaklık Dağılımının Sayısal Analizi

Year 2022, Volume: 12 Issue: 1, 1 - 21, 15.06.2022
https://doi.org/10.31466/kfbd.996230

Abstract

Bu çalışmada, sabit ve homojen ısı kaynağını içeren ve zamana bağlı olmayan ısı iletimi probleminin, taşınım ısı transferini içeren ve zamana bağlı olmayan ısı iletimi probleminin ayrıca zamana bağlı ısı iletimi probleminin sayısal çözümleri sonlu farklar yöntemi kullanılarak elde edilmiştir. Bu sayısal çözümler analitik çözümlerle doğrulanmıştır. Sayısal çözümler ve analitik çözümler arasındaki uyum gözlemlendikten sonra, tandem kaynak sürecini simüle etmek için bu üç farklı problem birleştirilmiştir. Bu çalışmanın ilk amacı, homojen olmayan hareketli ısı kaynaklarını ve taşınımla ısı transferini içeren bunun yanı sıra zamanın bir fonksiyonu olan ısı iletimi problemi için sayısal bir simülatör sunmaktır. Bu sayısal simülatör, açık ve örtük zaman ayrıklaştırma yöntemlerini içerir. Bu simülatörde; ızgara boyutlarını, zaman adımı boyutlarını, toplam simülasyon süresini, elektrotlar arasındaki mesafeyi, kaynakların gücünün büyüklüğünü, kaynakların hızını değiştirmek mümkündür. İkinci olarak, erimiş havuzun düşük sıcaklık bölgesinde sıvı metalin erken katılaşmasını araştırmak için önerilen sayısal simülatör kullanılarak tek ve çift tel kaynak işlemlerinin sıcaklık dağılımı karşılaştırılmıştır. Son olarak, geliştirilen sayısal simülatör ile ilgili tüm Matlab kodları, diğer araştırmacıların çalışmalarını kolaylaştırmak için makalenin sonuna eklenmiştir.

References

  • Bajor, T., Kwapisz, M., Krakowiak, M., & Jurczak, H. (2021). THE ANALYSIS OF THE EXTRUSION PROCESS OF Al 6005 ALLOY SECTION. Journal of Chemical Technology and Metallurgy, 56(3), 637-642.
  • Chen, D., Chen, M., & Wu, C. (2015). Effects of phase difference on the behavior of arc and weld pool in tandem P-GMAW. Journal of Materials Processing Technology, 225, 45-55.
  • Goecke, S., Berlin, F. U. B. T., Hedegård, J., Joining, S. I. M. R., & AB, E. W. E. (2001). Tandem Mig/Mag Welding. A Welding Review Published by Esab, 56(2-3), 24-28.
  • Golub, G. (1965). Numerical methods for solving linear least squares problems. Numerische Mathematik, 7(3), 206-216.
  • Grigull, U., & Sandner, H. (1984). Heat conduction.
  • Kim, C., Ahn, Y., Lee, K. B., & Kim, D. (2016). High-deposition-rate position welding of Al 5083 alloy for spherical-type liquefied natural gas tank. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(5), 818-824.
  • Lee, K. B., Kim, C., & Kim, D. S. (2013). High deposition rate pulse gas metal arc welding for Al 5083 thick plate. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(6), 848-854.
  • Lubich, C., & Ostermann, A. (1995). Linearly implicit time discretization of non-linear parabolic equations. IMA journal of numerical analysis, 15(4), 555-583.
  • Michie, K. (1999). Twin-wire GMAW: process, characteristics and applications. Welding Journal, 78(5), 31-34.
  • Özısık, M. N. (1993). Heat conduction. John Wiley & Sons.
  • Ozisik, M. N. (1985). Heat transfer: a basic approach (Vol. 1). New York: McGraw-Hill.
  • Peaceman, D. W. (2000). Fundamentals of numerical reservoir simulation. Elsevier.
  • Qin, G., Feng, C., & Ma, H. (2021). Suppression mechanism of weld appearance defects in tandem TIG welding by numerical modeling. Journal of Materials Research and Technology.
  • Qin, G., Meng, X., & Fu, B. (2015). High speed tandem gas tungsten arc welding process of thin stainless steel plate. Journal of Materials Processing Technology, 220, 58-64.
  • Rio, G., Soive, A., & Grolleau, V. (2005). Comparative study of numerical explicit time integration algorithms. Advances in Engineering Software, 36(4), 252-265.
  • Smith, G. D., Smith, G. D., & Smith, G. D. S. (1985). Numerical solution of partial differential equations: finite difference methods. Oxford university press.
  • Strikwerda, J. C. (2004). Finite difference schemes and partial differential equations. Society for Industrial and Applied Mathematics.
  • Torabi Ziaratgahi, S., Marsh, M. E., Sundnes, J., & Spiteri, R. J. (2014). Stable time integration suppresses unphysical oscillations in the bidomain model. Frontiers in Physics, 2, 40.
  • Tušek, J., Umek, I., & Bajcer, B. (2005). Weld-cost saving accomplished by replacing single-wire submerged arc welding with triple-wire welding. Science and Technology of Welding and Joining, 10(1), 15-22.
  • Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method. Pearson education.
  • Wu, K., Ding, N., Yin, T., Zeng, M., & Liang, Z. (2018). Effects of single and double pulses on microstructure and mechanical properties of weld joints during high-power double-wire GMAW. Journal of Manufacturing Processes, 35, 728-734.
  • Zargari, H. H., Ito, K., Kumar, M., & Sharma, A. (2020). Visualizing the vibration effect on the tandem-pulsed gas metal arc welding in the presence of surface tension active elements. International Journal of Heat and Mass Transfer, 161, 120310.
  • Zhang, L., Su, S., Wang, J., & Chen, S. J. (2019). Investigation of arc behaviour and metal transfer in cross arc welding. Journal of Manufacturing Processes, 37, 124-129.

Numerical Analysis of Temperature Distribution in Tandem Welding Process

Year 2022, Volume: 12 Issue: 1, 1 - 21, 15.06.2022
https://doi.org/10.31466/kfbd.996230

Abstract

In this study, the numerical solutions for the steady-state heat conduction problem with uniform heat source, the steady-state heat conduction problem with convective heat transfer and the transient heat conduction problem have been developed using finite difference method. These numerical solutions have been validated with analytical solutions. After observing the good agreements between numerical solutions and analytical solutions, these three different problems combined to simulate the tandem welding process. The first objective of this study is to present a numerical simulator for the transient heat conduction problem that includes non-uniform moving heat sources and convective heat transfer term. This numerical simulator contains explicit and implicit time discretization methods. In this simulator, it is possible to change the grid sizes, time step sizes, total simulation time, distance between electrodes, magnitude of the sources' power, speed of the sources, etc. Secondly, the temperature distribution of single and twin wire welding processes have been compared using proposed numerical simulator to investigate the premature solidification of liquid metal in low-temperature zone of molten pool. Thirdly, experimental study was carried out using Fluke Thermal Imager to validate numerical results. It was obtained that the maximum temperature of numerical result is very close to the maximum temperature of experimental result with 0.248 % error. Finally, the all Matlab codes related to developed numerical simulator have been added to Appendix to facilitate other researchers’ work.

References

  • Bajor, T., Kwapisz, M., Krakowiak, M., & Jurczak, H. (2021). THE ANALYSIS OF THE EXTRUSION PROCESS OF Al 6005 ALLOY SECTION. Journal of Chemical Technology and Metallurgy, 56(3), 637-642.
  • Chen, D., Chen, M., & Wu, C. (2015). Effects of phase difference on the behavior of arc and weld pool in tandem P-GMAW. Journal of Materials Processing Technology, 225, 45-55.
  • Goecke, S., Berlin, F. U. B. T., Hedegård, J., Joining, S. I. M. R., & AB, E. W. E. (2001). Tandem Mig/Mag Welding. A Welding Review Published by Esab, 56(2-3), 24-28.
  • Golub, G. (1965). Numerical methods for solving linear least squares problems. Numerische Mathematik, 7(3), 206-216.
  • Grigull, U., & Sandner, H. (1984). Heat conduction.
  • Kim, C., Ahn, Y., Lee, K. B., & Kim, D. (2016). High-deposition-rate position welding of Al 5083 alloy for spherical-type liquefied natural gas tank. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(5), 818-824.
  • Lee, K. B., Kim, C., & Kim, D. S. (2013). High deposition rate pulse gas metal arc welding for Al 5083 thick plate. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(6), 848-854.
  • Lubich, C., & Ostermann, A. (1995). Linearly implicit time discretization of non-linear parabolic equations. IMA journal of numerical analysis, 15(4), 555-583.
  • Michie, K. (1999). Twin-wire GMAW: process, characteristics and applications. Welding Journal, 78(5), 31-34.
  • Özısık, M. N. (1993). Heat conduction. John Wiley & Sons.
  • Ozisik, M. N. (1985). Heat transfer: a basic approach (Vol. 1). New York: McGraw-Hill.
  • Peaceman, D. W. (2000). Fundamentals of numerical reservoir simulation. Elsevier.
  • Qin, G., Feng, C., & Ma, H. (2021). Suppression mechanism of weld appearance defects in tandem TIG welding by numerical modeling. Journal of Materials Research and Technology.
  • Qin, G., Meng, X., & Fu, B. (2015). High speed tandem gas tungsten arc welding process of thin stainless steel plate. Journal of Materials Processing Technology, 220, 58-64.
  • Rio, G., Soive, A., & Grolleau, V. (2005). Comparative study of numerical explicit time integration algorithms. Advances in Engineering Software, 36(4), 252-265.
  • Smith, G. D., Smith, G. D., & Smith, G. D. S. (1985). Numerical solution of partial differential equations: finite difference methods. Oxford university press.
  • Strikwerda, J. C. (2004). Finite difference schemes and partial differential equations. Society for Industrial and Applied Mathematics.
  • Torabi Ziaratgahi, S., Marsh, M. E., Sundnes, J., & Spiteri, R. J. (2014). Stable time integration suppresses unphysical oscillations in the bidomain model. Frontiers in Physics, 2, 40.
  • Tušek, J., Umek, I., & Bajcer, B. (2005). Weld-cost saving accomplished by replacing single-wire submerged arc welding with triple-wire welding. Science and Technology of Welding and Joining, 10(1), 15-22.
  • Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method. Pearson education.
  • Wu, K., Ding, N., Yin, T., Zeng, M., & Liang, Z. (2018). Effects of single and double pulses on microstructure and mechanical properties of weld joints during high-power double-wire GMAW. Journal of Manufacturing Processes, 35, 728-734.
  • Zargari, H. H., Ito, K., Kumar, M., & Sharma, A. (2020). Visualizing the vibration effect on the tandem-pulsed gas metal arc welding in the presence of surface tension active elements. International Journal of Heat and Mass Transfer, 161, 120310.
  • Zhang, L., Su, S., Wang, J., & Chen, S. J. (2019). Investigation of arc behaviour and metal transfer in cross arc welding. Journal of Manufacturing Processes, 37, 124-129.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Osman Ünal 0000-0003-1101-6561

Nuri Akkaş 0000-0001-7477-7777

Early Pub Date June 15, 2022
Publication Date June 15, 2022
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Ünal, O., & Akkaş, N. (2022). Numerical Analysis of Temperature Distribution in Tandem Welding Process. Karadeniz Fen Bilimleri Dergisi, 12(1), 1-21. https://doi.org/10.31466/kfbd.996230