Research Article
BibTex RIS Cite

Doğrusal Olmayan Dörtlü Tank Sistemlerinin Seviye Kontrolü için Yapılandırılmış H-sonsuz Denetleyici Tasarımı ve Analizi

Year 2022, Volume: 12 Issue: 2, 802 - 820, 15.12.2022
https://doi.org/10.31466/kfbd.1159167

Abstract

Endüstriyel süreç sistemleri, temel bir endüstriyel görevi yerine getirmek için birbirleriyle etkileşime girerek çalışır. Süreçlerin çoğu, kontrol şemalarını tasarlamayı daha da zorlaştıran, doğrusal olmayan dinamiklere ve çok girdili çok çıktılı sistemlere sahiptir. Endüstriyel süreç uygulamalarında seviye kontrolü önemli problemlerden biridir. Bu çalışma, doğrusal olmayan bir dörtlü tank sisteminin seviye kontrolü için düşük dereceli gürbüz bir denetleyici tasarlamaktadır. Bu çalışmanın amacı, basit (düşük dereceli) dayanıklı denetleyici tasarlamak ve performansını klasik PID denetleyicinin performansıyla karşılaştırmaktır. PID denetleyiciler, uygulama kolaylığı nedeniyle çoğunlukla endüstriyel süreçlerde kullanılmaktadır. Ancak PID kontrolörlerin bazı dezavantajları vardır. Bu dezavantajlardan biri, endüstriyel süreç bozucu etkilere maruz kaldığında, PID denetleyici gürbüz denetleyiciden daha düşük dayanıklılık sunmasıdır. Benzetimler MATLAB\Simulink ortamında gerçekleştirilmiştir. Önerilen denetleyicinin performansı, klasik Oransal-İntegral-Türev (PID) kontrolör ile hataya bağlı performans indeksleri ve zaman-alanı özelikleri açısından karşılaştırılmıştır. Simülasyon sonuçları, endüstriyel süreçte doğrusal olmayan dörtlü tank sistemi için önerilen denetleyicinin, dayanıklı istek takibi, iyi bir bozucu etki reddetme ve parametre belirsizliklerine karşı dayanıklılık yeteneklerine sahip olduğunu göstermiştir.

References

  • Bennani, C., Bedouhene, F., Zemouche, A., Bibi, H., Chaib-Draa, K., Aitouche, A., & Rajamani, R. (2018). Robust H∞ Observer-Based Stabilization of Linear Discrete-Time Systems with Parameter Uncertaintes. In Annual American Control Conference (ACC) (pp. 4398-4402). IEEE.
  • Gahinet, P., & Apkarian, P. (2011, January). Structured H∞ synthesis in MATLAB. IFAC Proceedings Volumes, 44(1), 1435-1440.
  • Gahinet, P., & Apkarian, P. (2012, October). Frequency-domain tuning of fixed-structure control systems. In Proceedings of 2012 UKACC International Conference on Control (pp. 178-183). IEEE
  • Hilmi, Z. (2019) Effective Control of the Developmental Current of a Serial DC Motor with a Fuzzy Tuned-PI Controller Zeta Converter. Karadeniz Fen Bilimleri Dergisi, 9(1), 196-211.
  • Johansson, K. H. (2000). The quadruple-tank process: A multivariable laboratory process with an adjustable zero. IEEE Transactions on control systems technology, 8(3), 456-465.
  • Mehri, E., & Tabatabaei, M. (2021). Control of quadruple tank process using an adaptive fractional-order sliding mode controller. Journal of Control, Automation and Electrical Systems, 32(3), 605-614.
  • Meng, X., Yu, H., Zhang, J., Xu, T., & Wu, H., (2021). Liquid level control of four-tank system based on active disturbance rejection technology. Measurement, 175, 109146.
  • Mizumoto, I., Ikeda, D., Hirahata, T., & Iwai, Z. (2010). Design of discrete time adaptive PID control systems with parallel feedforward compensator. Control Engineering Practice, 18(2), 168-176.
  • Naami, G., Ouahi, M., Rabhi, A., Tadeo, F., & Tuan, V. L. B. (2022). Design of robust control for uncertain fuzzy quadruple-tank systems with time-varying delays. Granular Computing, 1-14.
  • Osman, A. Kara, T., & Arıcı, M. (2021). Robust adaptive control of a quadruple tank process with sliding mode and pole placement control strategies. IETE Journal of Research, 1-14.
  • Pradhan, J. K., & Ghosh, A., (2022). Design and implementation of decoupled periodic control scheme for a laboratory-based quadruple-tank process. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 236(1), 212-224.
  • Shah, D.H., & Patel, D. M. (2019). Design of sliding mode control for quadruple-tank MIMO process with time delay compensation. Journal of Process Control, 76, 46-61.
  • Skogestad, S., & Postlethwaite, I. (2007). Multivariable feedback control: analysis and design (Vol. 2). New York: Wiley.
  • Son, N. N. (2020). Level control of quadruple tank system based on adaptive inverse evolutionary neural controller. International Journal of Control, Automation and Systems, 18(9), 2386-2397.
  • Thamallah, A. Sakly, A., & M'Sahli, F. (2019). A new constrained PSO for fuzzy predictive control of Quadruple-Tank process. Measurement, 136, 93-104.
  • Vijay Anand, J., & Manoharan, P. S. (2022). Decentralized robust evolving cloud-based controller for two input two output systems. Transactions of the Institute of Measurement and Control, 44(5), 1056-1069.
  • Wei, L., Fang, F., & Shi. Y. (2013). Adaptive backstepping-based composite nonlinear feedback water level control for the nuclear U-tube steam generator. IEEE Transactions on Control Systems Technology, 22(1), 369-377.
  • Zare, K., Shasadeghi, M., Niknam, T., Asemani, M., H., & Mobayen, S., (2022). Constrained Robust Control by a Novel Dynamic Sliding Mode Surface. International Journal of Control, Automation and Systems, 20(3), 823-830.

Design and Analyse of Structured H-infinity Controller for Level Control of Nonlinear Quadruple Tank Systems

Year 2022, Volume: 12 Issue: 2, 802 - 820, 15.12.2022
https://doi.org/10.31466/kfbd.1159167

Abstract

Industrial process systems operate by interacting with each other to fulfil an essential industrial task. The majority of processes have nonlinear dynamics and multiple-input multiple-output systems which make them even more difficult to design control schemes. In industrial process applications, level control is one of the important problems. This study computes a structured H-infinity controller for the level control of a nonlinear quadruple tank system. This study aims to design a simple (low-order) robust controller and compare its performance to the performance of the classical Proportional-Integral-Derivative (PID) controller. PID controllers are mostly used in industrial processes due to their simplicity of implementation. However, PID controllers have some disadvantages. One of these disadvantages is that PID controllers offer lower robustness than robust control schemes when the industrial process operates in the presence of disturbances. Simulations are conducted in MATLAB\Simulink environment. Furthermore, the performance of the proposed controller is compared with the PID controller in terms of error-dependent performance indices and time-domain specifications. The simulation results have shown that the proposed controller provides robust set-point tracking, good disturbance rejection, and handling of the parametric uncertainty properties for nonlinear quadruple tank systems in industrial processes.

References

  • Bennani, C., Bedouhene, F., Zemouche, A., Bibi, H., Chaib-Draa, K., Aitouche, A., & Rajamani, R. (2018). Robust H∞ Observer-Based Stabilization of Linear Discrete-Time Systems with Parameter Uncertaintes. In Annual American Control Conference (ACC) (pp. 4398-4402). IEEE.
  • Gahinet, P., & Apkarian, P. (2011, January). Structured H∞ synthesis in MATLAB. IFAC Proceedings Volumes, 44(1), 1435-1440.
  • Gahinet, P., & Apkarian, P. (2012, October). Frequency-domain tuning of fixed-structure control systems. In Proceedings of 2012 UKACC International Conference on Control (pp. 178-183). IEEE
  • Hilmi, Z. (2019) Effective Control of the Developmental Current of a Serial DC Motor with a Fuzzy Tuned-PI Controller Zeta Converter. Karadeniz Fen Bilimleri Dergisi, 9(1), 196-211.
  • Johansson, K. H. (2000). The quadruple-tank process: A multivariable laboratory process with an adjustable zero. IEEE Transactions on control systems technology, 8(3), 456-465.
  • Mehri, E., & Tabatabaei, M. (2021). Control of quadruple tank process using an adaptive fractional-order sliding mode controller. Journal of Control, Automation and Electrical Systems, 32(3), 605-614.
  • Meng, X., Yu, H., Zhang, J., Xu, T., & Wu, H., (2021). Liquid level control of four-tank system based on active disturbance rejection technology. Measurement, 175, 109146.
  • Mizumoto, I., Ikeda, D., Hirahata, T., & Iwai, Z. (2010). Design of discrete time adaptive PID control systems with parallel feedforward compensator. Control Engineering Practice, 18(2), 168-176.
  • Naami, G., Ouahi, M., Rabhi, A., Tadeo, F., & Tuan, V. L. B. (2022). Design of robust control for uncertain fuzzy quadruple-tank systems with time-varying delays. Granular Computing, 1-14.
  • Osman, A. Kara, T., & Arıcı, M. (2021). Robust adaptive control of a quadruple tank process with sliding mode and pole placement control strategies. IETE Journal of Research, 1-14.
  • Pradhan, J. K., & Ghosh, A., (2022). Design and implementation of decoupled periodic control scheme for a laboratory-based quadruple-tank process. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 236(1), 212-224.
  • Shah, D.H., & Patel, D. M. (2019). Design of sliding mode control for quadruple-tank MIMO process with time delay compensation. Journal of Process Control, 76, 46-61.
  • Skogestad, S., & Postlethwaite, I. (2007). Multivariable feedback control: analysis and design (Vol. 2). New York: Wiley.
  • Son, N. N. (2020). Level control of quadruple tank system based on adaptive inverse evolutionary neural controller. International Journal of Control, Automation and Systems, 18(9), 2386-2397.
  • Thamallah, A. Sakly, A., & M'Sahli, F. (2019). A new constrained PSO for fuzzy predictive control of Quadruple-Tank process. Measurement, 136, 93-104.
  • Vijay Anand, J., & Manoharan, P. S. (2022). Decentralized robust evolving cloud-based controller for two input two output systems. Transactions of the Institute of Measurement and Control, 44(5), 1056-1069.
  • Wei, L., Fang, F., & Shi. Y. (2013). Adaptive backstepping-based composite nonlinear feedback water level control for the nuclear U-tube steam generator. IEEE Transactions on Control Systems Technology, 22(1), 369-377.
  • Zare, K., Shasadeghi, M., Niknam, T., Asemani, M., H., & Mobayen, S., (2022). Constrained Robust Control by a Novel Dynamic Sliding Mode Surface. International Journal of Control, Automation and Systems, 20(3), 823-830.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hasan Başak 0000-0002-3724-6819

Publication Date December 15, 2022
Published in Issue Year 2022 Volume: 12 Issue: 2

Cite

APA Başak, H. (2022). Design and Analyse of Structured H-infinity Controller for Level Control of Nonlinear Quadruple Tank Systems. Karadeniz Fen Bilimleri Dergisi, 12(2), 802-820. https://doi.org/10.31466/kfbd.1159167