Optical Properties of AlInN/AlN HEMTs in Detail
Year 2022,
Volume: 12 Issue: 2, 521 - 529, 15.12.2022
Ömer Akpınar
,
Ahmet Bilgili
Mustafa Öztürk
,
Süleyman Özçelik
Abstract
In this study, the optical properties of AlInN/AlN high electron mobility transistor (HEMT) structure, grown on c-oriented sapphire with Metal-Organic Chemical Vapor Deposition (MOCVD) technique, being investigated. Optical characterization is made Kubelka- Munk method. Transmittance, absorbance, and reflectance are investigated in detail. Also, the Kubelka-Munk theory is employed to determine the forbidden energy band gap of InN by using special functions. The energy band gap obtained by this method was compared.
Supporting Institution
Presidency Strategy and Budget Directorate
Project Number
2016K121220
References
- Vurgaftman, I., and Meyer, J. R. (2003). Band parameters for nitrogen-containing semiconductors. Journal of Applied Physics, 94(6), 3675-3696.
- Aleksan, R., Bolognese, T., Equer, B., Karar, A., and, Reymond, J. M. (1990). Observation of Single Minimum Ionizing Particles with Amorphous-Silicon Diodes. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 305(3), 512-516.
- Li, Y., Qian, F., Gredecak, S., Wu, Y., Yan, H., Blom, D. A., and, Lieber, C. M. (2006). Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Letters, 6(7), 1468-1473.
- Nakamura, S. (1991). Gan Growth Using Gan Buffer Layer. Japanese Journal of Applied Physics Part 2-Letters, 30(10a), 1705-1707.
- Xing, H., Keller, S., Wu, Y. F., Mccarty, L., Smorchkova, I. P., Buttari, D., Coffie, R., Green, D. S., Parish, G., Heikman, S., Shen, L., Zhang, N., Xu, J. J., Denbaars, S. P., and, Mishra, U. K. (2001). Gallium nitride-based transistors. Journal of Physics-Condensed Matter, 13(32), 7139-7157.
- Hajlaoui, M., Sediri, H., Pierucci, D., Henck, H., Phuphachong, T., Silly M., Vaulchier, L., Sirotti, F., Guldner, Y., Belkhou, R., and Ouerghi, A. (2016). High Electron Mobility in Epitaxial Trilayer Graphene on Off-axis SiC(0001). Scientific Reports, 22(7), 1-7
- Akpinar, O., Bilgili, A. K., Baskose, U. C., Ozturk, M. K., Ozcelik, S., and, Ozbay, E. (2020). Swanepoel method for AlInN/AlN HEMTs. Journal of Materials Science: Materials in Electronics, 31, (9969-9973).
- Groh, C. L., Brien, W. J., and, Boenke, K. M. (1992). Differences in color between fired porcelain and shade guides. Int J Prosthodont, 5(6), 510-4.
- Osa, R. A., Iparragirre, I., Ortiz, D., and Saiz, J. M. (2020). The extended Kubelka-Munk theory and its application to spectroscopy. ChemTexts, 6(2), 1585.
- Murphy, A. B. (2007). Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Solar Energy Materials& Solar Cells. 91, 1326–1337.
- Inbaraj, P. F. H., Prince, J. J. (2018). Optical and structural properties of Mg-doped ZnO thin films by a chemical bath deposition method. Journal of Materials Science: Materials in Electronics, 29(2), 935–943.
AlInN/AlN HEMT’in Detaylı Optik Özellikleri
Year 2022,
Volume: 12 Issue: 2, 521 - 529, 15.12.2022
Ömer Akpınar
,
Ahmet Bilgili
Mustafa Öztürk
,
Süleyman Özçelik
Abstract
Bu çalışmada, Metal Organik Kimyasal Buhar Biriktirme (MOCVD) tekniği ile c-yönelimli safir üzerinde büyütülen AlInN/AlN yüksek elektron hareketli transistör (HEMT) yapısının optik özellikleri incelenmiştir. Optik karakterizasyon Kubelka-Munk yöntemiyle yapılmıştır. Geçirgenlik, absorbans, yansıma detaylı olarak incelenmiştir. Ayrıca özel fonksiyonlar kullanarak InN'nin yasak enerji bant aralığını belirlemek için Kubelka-Munk teorisinden yararlanılmıştır. Bu yöntemle elde edilen enerji bant aralığının karşılaştırılması yapılmıştır.
Project Number
2016K121220
References
- Vurgaftman, I., and Meyer, J. R. (2003). Band parameters for nitrogen-containing semiconductors. Journal of Applied Physics, 94(6), 3675-3696.
- Aleksan, R., Bolognese, T., Equer, B., Karar, A., and, Reymond, J. M. (1990). Observation of Single Minimum Ionizing Particles with Amorphous-Silicon Diodes. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 305(3), 512-516.
- Li, Y., Qian, F., Gredecak, S., Wu, Y., Yan, H., Blom, D. A., and, Lieber, C. M. (2006). Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Letters, 6(7), 1468-1473.
- Nakamura, S. (1991). Gan Growth Using Gan Buffer Layer. Japanese Journal of Applied Physics Part 2-Letters, 30(10a), 1705-1707.
- Xing, H., Keller, S., Wu, Y. F., Mccarty, L., Smorchkova, I. P., Buttari, D., Coffie, R., Green, D. S., Parish, G., Heikman, S., Shen, L., Zhang, N., Xu, J. J., Denbaars, S. P., and, Mishra, U. K. (2001). Gallium nitride-based transistors. Journal of Physics-Condensed Matter, 13(32), 7139-7157.
- Hajlaoui, M., Sediri, H., Pierucci, D., Henck, H., Phuphachong, T., Silly M., Vaulchier, L., Sirotti, F., Guldner, Y., Belkhou, R., and Ouerghi, A. (2016). High Electron Mobility in Epitaxial Trilayer Graphene on Off-axis SiC(0001). Scientific Reports, 22(7), 1-7
- Akpinar, O., Bilgili, A. K., Baskose, U. C., Ozturk, M. K., Ozcelik, S., and, Ozbay, E. (2020). Swanepoel method for AlInN/AlN HEMTs. Journal of Materials Science: Materials in Electronics, 31, (9969-9973).
- Groh, C. L., Brien, W. J., and, Boenke, K. M. (1992). Differences in color between fired porcelain and shade guides. Int J Prosthodont, 5(6), 510-4.
- Osa, R. A., Iparragirre, I., Ortiz, D., and Saiz, J. M. (2020). The extended Kubelka-Munk theory and its application to spectroscopy. ChemTexts, 6(2), 1585.
- Murphy, A. B. (2007). Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Solar Energy Materials& Solar Cells. 91, 1326–1337.
- Inbaraj, P. F. H., Prince, J. J. (2018). Optical and structural properties of Mg-doped ZnO thin films by a chemical bath deposition method. Journal of Materials Science: Materials in Electronics, 29(2), 935–943.