Research Article
BibTex RIS Cite

Effect of Semi-Flake Mica and Micronized Magnesia on Strength Performance of Heat Resistant Lightweight Mortar

Year 2023, Volume: 13 Issue: 2, 288 - 309, 15.06.2023
https://doi.org/10.31466/kfbd.1191828

Abstract

In this study, the effects of high temperatures up to 1050°C on the mechanical properties of ternary binder system containing calcium aluminate cement, white cement and anhydrite gypsum lightweight mortars containing different amounts of mica and magnesia were investigated. Before the mortar samples were exposed to high temperature, the hardened density, porosity, and compressive strength developments related to the curing time were determined. Then, the compressive strengths of the samples subjected to high temperature were analyzed. According to the analysis results, as the mica and magnesia usage rate increased, the hardened mortar unit volume mass decreased, and their porosity ratio increased. At the highest Mica+MgO powder ratio, unit volume mass value decreased by an average of 13.9% compared to the control mortar. Porosity increased by 5.7% - 52.9% depending on the use of mica. Especially until the mixture design with a total mica+MgO ratio of 24%, the strength values of the test samples after 28 days increased by 71.8% compared to the control mortar. In the control mixture samples, the loss of strength after temperature interactions at 400˚C, 550˚C, 800˚C and 1050˚C was determined as 2.3%, 5.7%, 48.3% and 63.8%, respectively. In the mixture design with a Mica+MgO ratio of 20%, the loss of strength after temperature interactions was determined as 1.2%, 1.7%, 9.7% and 14.5%, respectively. In the mixture design using 40% mica+MgO, the strength loss after 1050˚C temperature interactions were determined to be only 2.8%. In this study, the suitability of using mica in half flake size and MgO in powder form in an amount that can reasonably allow strength reduction in mortar mix design that may be exposed to high temperatures at the application site was determined.

References

  • Abyzov, A. N. ve Kiryanova, L. A., (1981). Lightweight cellular and porous refractory concrete based on phosphate binding, Concrete and reinforced concrete, 12: 15-16.
  • Anonim, 2022. Çimsa A.Ş., 2022, “Isıdaç 40 – Refrakter”, Teknik Bilgi dokümanı, Çimsa A.Ş.
  • Anonim, 1987. “Refractories”, The Refractories Institute, 301 fith Avenues Suite 1517.Pittsburgh, PA 15222, http://www.pqcorp.com/portals/1/lit/Refractoriesbooklet.pdf, Page 4- 6.
  • ASTM, 2020. ASTM C109/C109M-20, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens, ASTM International.
  • ASTM, 2021. ASTM C642-21, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International
  • Cai, Y., Meng, F., Liu, L., Liu, R., Cui, Y., Zheng, H., and Wang, F., (2021). The Effect of the Modification of Mica by High-Temperature Mechanochemistry on the Anticorrosion Performance of Epoxy Coatings. Polymers, 13: 378. https://doi.org/10.3390/polym13 030378
  • Dawy, M., (2002). Electrical Properties and Infrared Studies of Heated Mica Sheets. Egypt. J. Sol., 25(1):137-152.
  • El-Leathy, A., Jeter, S., Al-Ansary, H., Abdel- Khalik, S., Golob, M., Danish, S. N., Saeed, N., Djajadiwinata, E., Al-Suhaibani, Z., (2016). Experimental measurements of thermal properties of high-temperature refractory materials used for thermal energy storage. AIP Conference Proceedings 1734, 050012 (2016); https://doi.org/10.1063/1.4949110
  • Jiang, T., Zhang, W., Liu, S., (2022). Performance Evaluation of a Full-Scale Fused Magnesia Furnace for MgO Production Based on Energy and Exergy Analysis. Energies, 15: 214. https://doi.org/10.3390/en15010214
  • Khoury, G. A., (1992). Compressive strength of concrete at high temperatures: a reassessment. Magazine of concrete Research, 44(161), 291-309.
  • Lin, W. M., Lin, T. D., Powers-Couche, L. J., (1996). Microstructures of fire-damaged concrete. Materials Journal, 93(3), 199-205.
  • Mahdi, Z. H., (2018). Effect the addition of mgo powder on some properties of concrete. Journal of Engineering and Applied Sciences, 13(11): 1819-6608.
  • Nesse, W. D., (2000). Introduction to mineralogy. New York: Oxford University Press. pp. 244–249. ISBN 9780195106916.
  • Popov, O. N., Lisovskaya, G. P., Bogomol'nyi, M. Y., Krasnyi, L. E., Senatova, V. A., (1984). Calculation of the optimal variants of thermal insulation for glass-melting furnaces, Glass and Ceramics, 41: 113-115.
  • Pundiene, I., Antonovich, V., Stonys, R., Demidova-Buiziniene, I., (2011). Development of refractory concrete for extreme conditions. 5th BalticConferenceonSilicateMaterials, IOP Publishing, IOP Conf.Series:MaterialsScienceandEngineering 25, 012001, doi:10.1088/1757-899X/25/1/012001
  • Sadik, C., El Amrani, I. E., Albizane, A., (2013). Composition and refractory properties of Mixtures of Moroccan Silica-Alumina Geo-materials and Alumina. New Journal of Glass and Ceramics. Vol.3, Scientific Research, An Academic Publisher, 2013, USA, Page 59.
  • Shikova, T., (2019). Adhesive strength in a high voltage mica insulation system. E3S Web of Conferences 140, 11006, EECE-2019 https://doi.org/10.1051/e3sconf/201914011006
  • TS EN 2011. TS EN 998-1, Kâgir harcı - Özellikler - Bölüm 1: Kaba ve ince sıva harcı, TSE, Ankara, s20.
  • TS EN, 2020. TS EN 1015-11, Kagir harcı - Deney metotları - Bölüm 11: Sertleşmiş harcın basınç ve eğilme dayanımının tayini, TSE, Ankara, s15.
  • Wu, Q., Zou, Y., Gu, J., Xu, J., Ji, R., Wang, G., (2020). The Influence and Action Mechanization of Mineral Mixed Material on High Fluidity Potassium Magnesium Phosphate Cement (MKPC), Journal of Composites Science, 4(1): 29. doi:10.3390/jcs4010029
  • Zanazzi, P. F., Pavese, A., (2002). Behavior of Micas at High-Pressure and High-Temperature. Reviews in Mineralogy and Geochemistry, 46(1): 99-116. DOI:10.2138/rmg.2002.46.02.

Yarı Pul Mika ve Mikronize Magnezyanın Isı Dirençli Hafif Harcın Dayanım Performansına Olan Etkisi

Year 2023, Volume: 13 Issue: 2, 288 - 309, 15.06.2023
https://doi.org/10.31466/kfbd.1191828

Abstract

Bu çalışmada, refrakter çimento, beyaz çimento ve anhidrit alçı içeren üçlü bağlayıcı sistemli hafif harçlar mika ve magnezya kullanılarak üretilmiş ve 1050 °C'ye kadar olan yüksek sıcaklıklara maruz kaldıktan sonra mekanik özellikleri araştırılmıştır. Harç numunelerinin öncelikle yüksek sıcaklığa maruz bırakılmadan önce sertleşmiş harç birim hacim kütlesi, gözeneklilik ve kür süresine bağlı basınç dayanım değerleri tespit edilmiştir. Daha sonra yüksek sıcaklığa tabi tutulan numunelerin basınç dayanımları analiz edilmiştir. Analiz sonuçlarına göre, mika ve magnezya kullanım oranı arttıkça harçların sertleşmiş harç birim hacim kütlesi azalmış ve gözeneklilik oranları artmıştır. En yüksek Mika+MgO katkı oranında, kontrol örneğine kıyasla test örneklerinin birim hacim kütle değerinde ortalama %13.9 hafifleme tespit edilmiştir. Gözeneklilik oranları ise mika kullanımına bağlı olarak %5.7 - %52.9 oranında artış göstermiştir. Özellikle mika+MgO toplam oranı %24 olan karışım tasarımına kadar, kontrol harcına göre test örneklerinin 28 günlük dayanım değerleri %71.8 oranlarında artarak gelişim göstermiştir. Kontrol karışımı örneklerinde 400 °C, 550 °C, 800 °C ve 1050 °C sıcaklık etkileşimleri sonrası dayanım kaybı sırasıyla %2.3, %5.7, %48.3 ve %63.8 olarak tespit edilmiştir. Mika+MgO oranı %20 olan karışım tasarımında 400 °C, 550 °C, 800 °C ve 1050 °C sıcaklık etkileşimleri sonrası dayanım kaybı sırasıyla %1.2, %1.7, %9.7 ve %14.5 olarak tespit edilmiştir. %40 mika+MgO kullanımlı karışım tasarımında ise 1050 °C sıcaklık etkileşimleri sonrası dayanım kaybının sadece %2.8 olduğu tespit edilmiştir. Bu çalışmada, uygulama yerinde yüksek sıcaklığa maruz kalabilecek harç karışım tasarımında dayanım düşüşüne makul ölçüde izin verebilecek bir miktarda yarı pul boyutlu mika ve toz formda MgO’in kullanımının uygunluğu belirlenmiştir.

References

  • Abyzov, A. N. ve Kiryanova, L. A., (1981). Lightweight cellular and porous refractory concrete based on phosphate binding, Concrete and reinforced concrete, 12: 15-16.
  • Anonim, 2022. Çimsa A.Ş., 2022, “Isıdaç 40 – Refrakter”, Teknik Bilgi dokümanı, Çimsa A.Ş.
  • Anonim, 1987. “Refractories”, The Refractories Institute, 301 fith Avenues Suite 1517.Pittsburgh, PA 15222, http://www.pqcorp.com/portals/1/lit/Refractoriesbooklet.pdf, Page 4- 6.
  • ASTM, 2020. ASTM C109/C109M-20, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens, ASTM International.
  • ASTM, 2021. ASTM C642-21, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International
  • Cai, Y., Meng, F., Liu, L., Liu, R., Cui, Y., Zheng, H., and Wang, F., (2021). The Effect of the Modification of Mica by High-Temperature Mechanochemistry on the Anticorrosion Performance of Epoxy Coatings. Polymers, 13: 378. https://doi.org/10.3390/polym13 030378
  • Dawy, M., (2002). Electrical Properties and Infrared Studies of Heated Mica Sheets. Egypt. J. Sol., 25(1):137-152.
  • El-Leathy, A., Jeter, S., Al-Ansary, H., Abdel- Khalik, S., Golob, M., Danish, S. N., Saeed, N., Djajadiwinata, E., Al-Suhaibani, Z., (2016). Experimental measurements of thermal properties of high-temperature refractory materials used for thermal energy storage. AIP Conference Proceedings 1734, 050012 (2016); https://doi.org/10.1063/1.4949110
  • Jiang, T., Zhang, W., Liu, S., (2022). Performance Evaluation of a Full-Scale Fused Magnesia Furnace for MgO Production Based on Energy and Exergy Analysis. Energies, 15: 214. https://doi.org/10.3390/en15010214
  • Khoury, G. A., (1992). Compressive strength of concrete at high temperatures: a reassessment. Magazine of concrete Research, 44(161), 291-309.
  • Lin, W. M., Lin, T. D., Powers-Couche, L. J., (1996). Microstructures of fire-damaged concrete. Materials Journal, 93(3), 199-205.
  • Mahdi, Z. H., (2018). Effect the addition of mgo powder on some properties of concrete. Journal of Engineering and Applied Sciences, 13(11): 1819-6608.
  • Nesse, W. D., (2000). Introduction to mineralogy. New York: Oxford University Press. pp. 244–249. ISBN 9780195106916.
  • Popov, O. N., Lisovskaya, G. P., Bogomol'nyi, M. Y., Krasnyi, L. E., Senatova, V. A., (1984). Calculation of the optimal variants of thermal insulation for glass-melting furnaces, Glass and Ceramics, 41: 113-115.
  • Pundiene, I., Antonovich, V., Stonys, R., Demidova-Buiziniene, I., (2011). Development of refractory concrete for extreme conditions. 5th BalticConferenceonSilicateMaterials, IOP Publishing, IOP Conf.Series:MaterialsScienceandEngineering 25, 012001, doi:10.1088/1757-899X/25/1/012001
  • Sadik, C., El Amrani, I. E., Albizane, A., (2013). Composition and refractory properties of Mixtures of Moroccan Silica-Alumina Geo-materials and Alumina. New Journal of Glass and Ceramics. Vol.3, Scientific Research, An Academic Publisher, 2013, USA, Page 59.
  • Shikova, T., (2019). Adhesive strength in a high voltage mica insulation system. E3S Web of Conferences 140, 11006, EECE-2019 https://doi.org/10.1051/e3sconf/201914011006
  • TS EN 2011. TS EN 998-1, Kâgir harcı - Özellikler - Bölüm 1: Kaba ve ince sıva harcı, TSE, Ankara, s20.
  • TS EN, 2020. TS EN 1015-11, Kagir harcı - Deney metotları - Bölüm 11: Sertleşmiş harcın basınç ve eğilme dayanımının tayini, TSE, Ankara, s15.
  • Wu, Q., Zou, Y., Gu, J., Xu, J., Ji, R., Wang, G., (2020). The Influence and Action Mechanization of Mineral Mixed Material on High Fluidity Potassium Magnesium Phosphate Cement (MKPC), Journal of Composites Science, 4(1): 29. doi:10.3390/jcs4010029
  • Zanazzi, P. F., Pavese, A., (2002). Behavior of Micas at High-Pressure and High-Temperature. Reviews in Mineralogy and Geochemistry, 46(1): 99-116. DOI:10.2138/rmg.2002.46.02.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Lütfullah Gündüz 0000-0003-2487-467X

Şevket Onur Kalkan 0000-0003-0250-8134

Early Pub Date June 15, 2023
Publication Date June 15, 2023
Published in Issue Year 2023 Volume: 13 Issue: 2

Cite

APA Gündüz, L., & Kalkan, Ş. O. (2023). Yarı Pul Mika ve Mikronize Magnezyanın Isı Dirençli Hafif Harcın Dayanım Performansına Olan Etkisi. Karadeniz Fen Bilimleri Dergisi, 13(2), 288-309. https://doi.org/10.31466/kfbd.1191828