Research Article
BibTex RIS Cite

Treatment of Textile Wastewater by Electrocoagulation Using Direct Solar Energy

Year 2023, Volume: 13 Issue: 2, 504 - 516, 15.06.2023
https://doi.org/10.31466/kfbd.1227078

Abstract

In this study, the treatment of textile wastewater containing high dye concentration was evaluated by a green and sustainable electrocoagulation process using solar energy which is a renewable energy source and waste metals. In the electrocoagulation process directly supported energy by a photovoltaic panel (PV), the changes in the current obtained from the solar energy in the textile wastewater were monitored and recorded for ten hours. The current values varied in the range of 0.5A-2A, and in this range, the electrocoagulation was carried out using scrap iron electrodes at different electrolysis times (0-60 min) at seven different currents. After the treatment, the COD and color removal efficiencies were determined, and the optimum electrolysis time was obtained for each unit current value. In addition, pollution removal was evaluated at acidic, neutral and alkaline pH conditions. As a result, the highest COD and color removal were achieved in the treatment of textile wastewater with battery-free direct electrocoagulation at 1A 15 min operating condition at wastewater pH and were determined as 92% and 95%, respectively.

References

  • Akkaya, G. K. (2022). Treatment of petroleum wastewater by electrocoagulation using scrap perforated (Fe-anode) and plate (Al and Fe-cathode) metals: Optimization of operating parameters by RSM. Chemical Engineering Research and Design, 187, 261–275. https://doi.org/10.1016/J.CHERD.2022.08.048
  • Aouni, A., Fersi, C., Ben Sik Ali, M., & Dhahbi, M. (2009). Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process. Journal of Hazardous Materials, 168(2–3), 868–874. https://doi.org/10.1016/J.JHAZMAT.2009.02.112
  • APHA-AWWA-WPCF. 1981. Standard Methods for the Examination of Water and Wastewater. APHA American Public Health Association.
  • Asselin, M., Drogui, P., Benmoussa, H., & Blais, J. F. (2008). Effectiveness of electrocoagulation process in removing organic compounds from slaughterhouse wastewater using monopolar and bipolar electrolytic cells. Chemosphere, 72(11), 1727-1733.
  • Bani-Melhem, K., Al-Kilani, M. R., & Tawalbeh, M. (2023). Evaluation of scrap metallic waste electrode materials for the application in electrocoagulation treatment of wastewater. Chemosphere, 310, 136668. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136668
  • Bayramoglu, M., Eyvaz, M., & Kobya, M. (2007). Treatment of the textile wastewater by electrocoagulation: Economical evaluation. Chemical Engineering Journal, 128(2–3), 155–161. https://doi.org/10.1016/J.CEJ.2006.10.008
  • Bharath, M., Krishna, B. M., & Manoj Kumar, B. (2020). Degradation and biodegradability improvement of the landfill leachate using electrocoagulation with iron and aluminum electrodes: a comparative study. Water Practice and Technology, 15(2), 540-549.
  • Cao, W., & Hu, Y. (2016). Renewable Energy: Utilisation and System Integration. BoD–Books on Demand.
  • De Maman, R., da Luz, V. C., Behling, L., Dervanoski, A., Dalla Rosa, C., & Pasquali, G. D. L. (2022). Electrocoagulation applied for textile wastewater oxidation using iron slag as electrodes. Environmental Science and Pollution Research, 29(21), 31713–31722.
  • El-Gohary, F., & Tawfik, A. (2009). Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process. Desalination, 249(3), 1159–1164. https://doi.org/10.1016/J.DESAL.2009.05.010
  • Emamjomeh, M. M., & Sivakumar, M. (2009). Fluoride removal by a continuous flow electrocoagulation reactor. Journal of Environmental Management, 90(2), 1204–1212. https://doi.org/10.1016/J.JENVMAN.2008.06.001
  • Gengec, E., Kobya, M., Demirbas, E., Akyol, A., & Oktor, K. (2012). Optimization of baker’s yeast wastewater using response surface methodology by electrocoagulation. Desalination, 286, 200–209.
  • Ghanbari, F., & Moradi, M. (2015). A comparative study of electrocoagulation, electrochemical Fenton, electro-Fenton and peroxi-coagulation for decolorization of real textile wastewater: Electrical energy consumption and biodegradability improvement. Journal of Environmental Chemical Engineering, 3(1), 499–506. https://doi.org/10.1016/J.JECE.2014.12.018
  • Golder, A. K., Samanta, A. N., & Ray, S. (2007). Removal of trivalent chromium by electrocoagulation. Separation and Purification Technology, 53(1), 33–41. https://doi.org/10.1016/J.SEPPUR.2006.06.010
  • Guo, Z. R., Zhang, G., Fang, J., & Dou, X. (2006). Enhanced chromium recovery from tanning wastewater. Journal of Cleaner Production, 14(1), 75–79. https://doi.org/10.1016/J.JCLEPRO.2005.01.005
  • Huda, N., Raman, A. A. A., Bello, M. M., & Ramesh, S. (2017). Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: effects of process parameters and optimization. Journal of Environmental Management, 204, 75–81.
  • Jegatheesan, V., Pramanik, B. K., Chen, J., Navaratna, D., Chang, C. Y., & Shu, L. (2016). Treatment of textile wastewater with membrane bioreactor: A critical review. Bioresource Technology, 204, 202–212. https://doi.org/10.1016/J.BIORTECH.2016.01.006
  • Mollah, M. Y. A., Schennach, R., Parga, J. R., & Cocke, D. L. (2001). Electrocoagulation (EC)—science and applications. Journal of Hazardous Materials, 84(1), 29–41.
  • Nippatla, N., & Philip, L. (2020). Electrochemical process employing scrap metal waste as electrodes for dye removal. Journal of Environmental Management, 273, 111039. https://doi.org/10.1016/J.JENVMAN.2020.111039
  • Pacheco, H. G. J., Elguera, N. Y. M., Sarka, H. D. Q., Ancco, M., Eguiluz, K. I. B., & Salazar-Banda, G. R. (2022). Box-Behnken Response Surface Design for Modeling and Optimization of Electrocoagulation for Treating Real Textile wastewater. International Journal of Environmental Research, 16(4), 1–12.
  • Pandey, A. K., Reji Kumar, R., B, K., Laghari, I. A., Samykano, M., Kothari, R., Abusorrah, A. M., Sharma, K., & Tyagi, V. V. (2021). Utilization of solar energy for wastewater treatment: Challenges and progressive research trends. Journal of Environmental Management, 297, 113300. https://doi.org/10.1016/J.JENVMAN.2021.113300
  • Park, H., Vecitis, C. D., & Hoffmann, M. R. (2008). Solar-powered electrochemical oxidation of organic compounds coupled with the cathodic production of molecular hydrogen. The Journal of Physical Chemistry A, 112(33), 7616–7626.
  • Rahman, F., & Xu, W. (2016). Advances in solar photovoltaic power plants. Springer.
  • Sahu, O. P., & Chaudhari, P. K. (2015). Electrochemical treatment of sugar industry wastewater: COD and color removal. Journal of Electroanalytical Chemistry, 739, 122-129.
  • Siddique, K., Rizwan, M., Shahid, M. J., Ali, S., Ahmad, R., & Rizvi, H. (2017). Textile wastewater treatment options: a critical review. Enhancing Cleanup of Environmental Pollutants, 183–207.
  • Singh, S., Mahesh, S., & Sahana, M. (2019). Three-dimensional batch electrochemical coagulation (ECC) of health care facility wastewater—clean water reclamation. Environmental Science and Pollution Research, 26, 12813-12827.
  • Sanei, E., & Mokhtarani, N. (2022). Leachate post-treatment by electrocoagulation process: Effect of polarity switching and anode-to-cathode surface area. Journal of Environmental Management, 319, 115733.
  • Thomson, M., & Infield, D. (2003). A photovoltaic-powered seawater reverse-osmosis system without batteries. Desalination, 153(1–3), 1–8. https://doi.org/10.1016/S0011-9164(03)80004-8
  • Thomson, M., & Infield, D. (2005). Laboratory demonstration of a photovoltaic-powered seawater reverse-osmosis system without batteries. Desalination, 183(1–3), 105–111. https://doi.org/10.1016/J.DESAL.2005.03.031
  • Valero, D., García-García, V., Expósito, E., Aldaz, A., & Montiel, V. (2014). Electrochemical treatment of wastewater from almond industry using DSA-type anodes: Direct connection to a PV generator. Separation and Purification Technology, 123, 15–22. https://doi.org/10.1016/J.SEPPUR.2013.12.023
  • Valero, D., Ortiz, J. M., Exposito, E., Montiel, V., & Aldaz, A. (2008). Electrocoagulation of a synthetic textile effluent powered by photovoltaic energy without batteries: Direct connection behaviour. Solar Energy Materials and Solar Cells, 92(3), 291–297.
  • Vepsäläinen, M., Pulliainen, M., & Sillanpää, M. (2012). Effect of electrochemical cell structure on natural organic matter (NOM) removal from surface water through electrocoagulation (EC). Separation and Purification Technology, 99, 20–27. https://doi.org/10.1016/j.seppur.2012.08.011 2017).
  • Zaroual, Z., Azzi, M., Saib, N., & Chaînet, E. (2006). Contribution to the study of electrocoagulation mechanism in basic textile effluent. Journal of Hazardous Materials, 131(1-3), 73-78.

Doğrudan Güneş Enerjisi Kullanılarak Tekstil Atıksularının Elektrokoagülasyon ile Arıtımı

Year 2023, Volume: 13 Issue: 2, 504 - 516, 15.06.2023
https://doi.org/10.31466/kfbd.1227078

Abstract

Bu çalışmada, yenilenebilir bir enerji kaynağı güneş enerjisi ve atık metaller kullanılarak yeşil ve sürdürülebilir bir elektrokoagülasyon prosesi ile yüksek boya konsantrasyonu içeren tekstil atıksuların arıtımı değerlendirilmiştir. Doğrudan bir fotovoltaik panel (PV) ile desteklenen elektrokoagülasyon prosesinde ilk olarak güneş enerjisinden elde edilen akımın, tekstil atıksuyundaki değişimleri on saat boyunca izlenmiş ve kaydedilmiştir. Elde edilen akım değerleri 0,5A-2A aralığında değişmiş ve bu aralıkta yedi farklı akımda farklı elektroliz sürelerinde (0-60 dakika) hurdaya ayrılmış demir elektrotlar kullanılarak elektrokoagülasyon ile arıtım gerçekleştirilmiştir. Arıtım sonrasında KOİ ve renk giderim verimleri belirlenmiş ve her birim akım değeri için optimum elektroliz süresi elde edilmiştir. Ayrıca, asidik, nötr ve alkali pH koşullarında kirlilik giderimi değerlendirilmiştir. Sonuç olarak pilsiz doğrudan elektrokoagülasyonla tekstil atıksularının arıtımı atıksu pH’sında 1A 15 dk işletme koşulunda en yüksek KOİ (%92) ve renk (%95) giderimi elde edilmiştir.

References

  • Akkaya, G. K. (2022). Treatment of petroleum wastewater by electrocoagulation using scrap perforated (Fe-anode) and plate (Al and Fe-cathode) metals: Optimization of operating parameters by RSM. Chemical Engineering Research and Design, 187, 261–275. https://doi.org/10.1016/J.CHERD.2022.08.048
  • Aouni, A., Fersi, C., Ben Sik Ali, M., & Dhahbi, M. (2009). Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process. Journal of Hazardous Materials, 168(2–3), 868–874. https://doi.org/10.1016/J.JHAZMAT.2009.02.112
  • APHA-AWWA-WPCF. 1981. Standard Methods for the Examination of Water and Wastewater. APHA American Public Health Association.
  • Asselin, M., Drogui, P., Benmoussa, H., & Blais, J. F. (2008). Effectiveness of electrocoagulation process in removing organic compounds from slaughterhouse wastewater using monopolar and bipolar electrolytic cells. Chemosphere, 72(11), 1727-1733.
  • Bani-Melhem, K., Al-Kilani, M. R., & Tawalbeh, M. (2023). Evaluation of scrap metallic waste electrode materials for the application in electrocoagulation treatment of wastewater. Chemosphere, 310, 136668. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136668
  • Bayramoglu, M., Eyvaz, M., & Kobya, M. (2007). Treatment of the textile wastewater by electrocoagulation: Economical evaluation. Chemical Engineering Journal, 128(2–3), 155–161. https://doi.org/10.1016/J.CEJ.2006.10.008
  • Bharath, M., Krishna, B. M., & Manoj Kumar, B. (2020). Degradation and biodegradability improvement of the landfill leachate using electrocoagulation with iron and aluminum electrodes: a comparative study. Water Practice and Technology, 15(2), 540-549.
  • Cao, W., & Hu, Y. (2016). Renewable Energy: Utilisation and System Integration. BoD–Books on Demand.
  • De Maman, R., da Luz, V. C., Behling, L., Dervanoski, A., Dalla Rosa, C., & Pasquali, G. D. L. (2022). Electrocoagulation applied for textile wastewater oxidation using iron slag as electrodes. Environmental Science and Pollution Research, 29(21), 31713–31722.
  • El-Gohary, F., & Tawfik, A. (2009). Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process. Desalination, 249(3), 1159–1164. https://doi.org/10.1016/J.DESAL.2009.05.010
  • Emamjomeh, M. M., & Sivakumar, M. (2009). Fluoride removal by a continuous flow electrocoagulation reactor. Journal of Environmental Management, 90(2), 1204–1212. https://doi.org/10.1016/J.JENVMAN.2008.06.001
  • Gengec, E., Kobya, M., Demirbas, E., Akyol, A., & Oktor, K. (2012). Optimization of baker’s yeast wastewater using response surface methodology by electrocoagulation. Desalination, 286, 200–209.
  • Ghanbari, F., & Moradi, M. (2015). A comparative study of electrocoagulation, electrochemical Fenton, electro-Fenton and peroxi-coagulation for decolorization of real textile wastewater: Electrical energy consumption and biodegradability improvement. Journal of Environmental Chemical Engineering, 3(1), 499–506. https://doi.org/10.1016/J.JECE.2014.12.018
  • Golder, A. K., Samanta, A. N., & Ray, S. (2007). Removal of trivalent chromium by electrocoagulation. Separation and Purification Technology, 53(1), 33–41. https://doi.org/10.1016/J.SEPPUR.2006.06.010
  • Guo, Z. R., Zhang, G., Fang, J., & Dou, X. (2006). Enhanced chromium recovery from tanning wastewater. Journal of Cleaner Production, 14(1), 75–79. https://doi.org/10.1016/J.JCLEPRO.2005.01.005
  • Huda, N., Raman, A. A. A., Bello, M. M., & Ramesh, S. (2017). Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: effects of process parameters and optimization. Journal of Environmental Management, 204, 75–81.
  • Jegatheesan, V., Pramanik, B. K., Chen, J., Navaratna, D., Chang, C. Y., & Shu, L. (2016). Treatment of textile wastewater with membrane bioreactor: A critical review. Bioresource Technology, 204, 202–212. https://doi.org/10.1016/J.BIORTECH.2016.01.006
  • Mollah, M. Y. A., Schennach, R., Parga, J. R., & Cocke, D. L. (2001). Electrocoagulation (EC)—science and applications. Journal of Hazardous Materials, 84(1), 29–41.
  • Nippatla, N., & Philip, L. (2020). Electrochemical process employing scrap metal waste as electrodes for dye removal. Journal of Environmental Management, 273, 111039. https://doi.org/10.1016/J.JENVMAN.2020.111039
  • Pacheco, H. G. J., Elguera, N. Y. M., Sarka, H. D. Q., Ancco, M., Eguiluz, K. I. B., & Salazar-Banda, G. R. (2022). Box-Behnken Response Surface Design for Modeling and Optimization of Electrocoagulation for Treating Real Textile wastewater. International Journal of Environmental Research, 16(4), 1–12.
  • Pandey, A. K., Reji Kumar, R., B, K., Laghari, I. A., Samykano, M., Kothari, R., Abusorrah, A. M., Sharma, K., & Tyagi, V. V. (2021). Utilization of solar energy for wastewater treatment: Challenges and progressive research trends. Journal of Environmental Management, 297, 113300. https://doi.org/10.1016/J.JENVMAN.2021.113300
  • Park, H., Vecitis, C. D., & Hoffmann, M. R. (2008). Solar-powered electrochemical oxidation of organic compounds coupled with the cathodic production of molecular hydrogen. The Journal of Physical Chemistry A, 112(33), 7616–7626.
  • Rahman, F., & Xu, W. (2016). Advances in solar photovoltaic power plants. Springer.
  • Sahu, O. P., & Chaudhari, P. K. (2015). Electrochemical treatment of sugar industry wastewater: COD and color removal. Journal of Electroanalytical Chemistry, 739, 122-129.
  • Siddique, K., Rizwan, M., Shahid, M. J., Ali, S., Ahmad, R., & Rizvi, H. (2017). Textile wastewater treatment options: a critical review. Enhancing Cleanup of Environmental Pollutants, 183–207.
  • Singh, S., Mahesh, S., & Sahana, M. (2019). Three-dimensional batch electrochemical coagulation (ECC) of health care facility wastewater—clean water reclamation. Environmental Science and Pollution Research, 26, 12813-12827.
  • Sanei, E., & Mokhtarani, N. (2022). Leachate post-treatment by electrocoagulation process: Effect of polarity switching and anode-to-cathode surface area. Journal of Environmental Management, 319, 115733.
  • Thomson, M., & Infield, D. (2003). A photovoltaic-powered seawater reverse-osmosis system without batteries. Desalination, 153(1–3), 1–8. https://doi.org/10.1016/S0011-9164(03)80004-8
  • Thomson, M., & Infield, D. (2005). Laboratory demonstration of a photovoltaic-powered seawater reverse-osmosis system without batteries. Desalination, 183(1–3), 105–111. https://doi.org/10.1016/J.DESAL.2005.03.031
  • Valero, D., García-García, V., Expósito, E., Aldaz, A., & Montiel, V. (2014). Electrochemical treatment of wastewater from almond industry using DSA-type anodes: Direct connection to a PV generator. Separation and Purification Technology, 123, 15–22. https://doi.org/10.1016/J.SEPPUR.2013.12.023
  • Valero, D., Ortiz, J. M., Exposito, E., Montiel, V., & Aldaz, A. (2008). Electrocoagulation of a synthetic textile effluent powered by photovoltaic energy without batteries: Direct connection behaviour. Solar Energy Materials and Solar Cells, 92(3), 291–297.
  • Vepsäläinen, M., Pulliainen, M., & Sillanpää, M. (2012). Effect of electrochemical cell structure on natural organic matter (NOM) removal from surface water through electrocoagulation (EC). Separation and Purification Technology, 99, 20–27. https://doi.org/10.1016/j.seppur.2012.08.011 2017).
  • Zaroual, Z., Azzi, M., Saib, N., & Chaînet, E. (2006). Contribution to the study of electrocoagulation mechanism in basic textile effluent. Journal of Hazardous Materials, 131(1-3), 73-78.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Articles
Authors

Gulizar Kurtoglu Akkaya 0000-0003-4779-0428

İbrahim Üçgül 0000-0001-9794-0653

Early Pub Date June 15, 2023
Publication Date June 15, 2023
Published in Issue Year 2023 Volume: 13 Issue: 2

Cite

APA Kurtoglu Akkaya, G., & Üçgül, İ. (2023). Doğrudan Güneş Enerjisi Kullanılarak Tekstil Atıksularının Elektrokoagülasyon ile Arıtımı. Karadeniz Fen Bilimleri Dergisi, 13(2), 504-516. https://doi.org/10.31466/kfbd.1227078