Research Article
BibTex RIS Cite

Çelik Sacların Asimetrik Haddelenmesinde Pürüzlülük Transferinin Deneysel Olarak İncelenmesi

Year 2023, Volume: 13 Issue: 3, 1070 - 1089, 15.09.2023
https://doi.org/10.31466/kfbd.1289221

Abstract

Bu çalışmada asimetrik haddelemede hız, kalınlık azalması, merdane yüzey pürüzlülüğü, malzeme kalınlığı, yüzey durumu (kuru veya yağlanmış) ve haddeleme kuvveti gibi haddeleme parametrelerinin pürüzlendirme karakterizasyonu üzerindeki etkisi incelenmiştir. Haddeleme testine tabi tutulan numunelerin yüzey pürüzlülükleri ölçülmüştür. Pürüzlülük değerlerinin ortalaması ve standart sapması belirlenerek 3 boyutlu tarama görüntüleri elde edilmiştir. Yağlanmış pürüzlendirme deneyleri, yağlamanın pürüzlülük transferini azalttığını ortaya çıkarmıştır. Haddeleme hızı arttıkça malzeme yüzeyindeki pürüzlülüğün azaldığı bulunmuştur. Öte yandan yüksek hız, yüzey pürüzlülüğünü artıran haddeleme kuvvetini artırıcı bir etkiye sahip olduğu görülmüştür. Hızın standart sapma üzerindeki etkisi doğru orantılı olarak değişmektedir. Ayrıca yağlı haddeleme yüksek hızlarda daha homojen bir pürüzlülük dağılımı sağlarken, kuru haddeleme daha düşük hızlarda homojen bir pürüzlülük vermiştir. Kalın malzemelerle haddeleme kuvvetinin daha yüksek olduğu ortaya çıkmıştır. Kalın malzeme kullanımında merdane pürüzlülüğünün haddeleme kuvvetine fazla etkisi olmazken, ince malzeme kullanımında çok pürüzlü merdanede bu etki daha belirgin olmuştur. Pürüzlü ve çok pürüzlü merdanelerin kullanıldığı küçük ezme oranlarında standart sapmanın daha düşük olduğu görülmüştür. Elde edilen sonuçlara göre asimetrik haddelemenin geleneksel haddelemeye göre bazı avantajları olmasına rağmen çelik sacların pürüzlendirilmesi için uygun bir yöntem olmadığı sonucuna varılmıştır.

Supporting Institution

KARABÜK ÜNİVERSİTESİ

Project Number

KBÜBAP-22-YL-052

Thanks

Malzeme tedarik ve numune hazırlama sürecinde bize yardımcı olan ÇINAR Çelik Servis Merkezi'ne, testlerin yapılması sürecinde ekipman sağlayan KBÜ Teknoloji Fakültesi'ne, pürüzlülük ölçümlerinin yapıldığı KBU Demir-Çelik Enstitüsü'ne müteşekkiriz.

References

  • Beddoes, J. and J. Bibby. 1999. Bulk Deformation Processes.
  • Cho, Jae Hyung, Sang Soo Jeong, Hyoung Wook Kim, and Suk Bong Kang. 2013. “Texture and Microstructure Evolution during the Symmetric and Asymmetric Rolling of AZ31B Magnesium Alloys.” Materials Science and Engineering A 566:40–46.
  • Çolak, Bilal. 2021. “A Comparison of Tonnage-Dependent Shot Blast and Electro-Discharge Texturing Methods.” Surface Topography: Metrology and Properties 9(3):35051.
  • Çolak, Bilal and Naci Kurgan. 2018. “An Experimental Investigation into Roughness Transfer in Skin-Pass Rolling of Steel Strips.” International Journal of Advanced Manufacturing Technology 96(9–12):3321–30.
  • Elkoca, Oktay. 2008. “A Study on the Characteristics of Electrical Discharge Textured Skin Pass Mill Work Roll.” Surface and Coatings Technology 202(12):2765–74.
  • Fajfar, Peter, Alenka Šalej Lah, Jakob Kraner, and Goran Kugler. 2017. “Asymmetric Rolling Process.” Materials and Geoenvironment 64(3):151–60.
  • Kiefer, Thomas and Andreas Kugi. 2008. “An Analytical Approach for Modelling Asymmetrical Hot Rolling of Heavy Plates.” Mathematical and Computer Modelling of Dynamical Systems 14(3):249–67.
  • Kijima, Hideo. 2014. “Influence of Roll Radius on Roughness Transfer in Skin-Pass Rolling of Steel Strip.” Journal of Materials Processing Technology 214(5):1111–19.
  • Kijima, Hideo. 2015. “An Experimental Investigation on the Influence of Lubrication on Roughness Transfer in Skin-Pass Rolling of Steel Strip.” International Journal of Advanced Manufacturing Technology 96(9–12):3321–30.
  • Kimura, Yukio, Masayasu Ueno, and Yutaka Mihara. 2009. “Printing Behavior of Roll Surface Texture to Hot-Dip Galvanized Steel Sheet in Temper Rolling.” 95(5):399–405.
  • Li, R., Q. Zhang, X. Zhang, M. Yu, and B. Wang. 2015. “Control Method for Steel Strip Roughness in Two-Stand Temper Mill Rolling.” Chinese Journal of Mechanical Engineering (English Edition) 28(3):573–79.
  • Liu, Jie and Rudolf Kawalla. 2012. “Influence of Asymmetric Hot Rolling on Microstructure and Rolling Force with Austenitic Steel.” Transactions of Nonferrous Metals Society of China (English Edition) 22(SUPPL.2):s504–11.
  • Mazur, V. L. 2015. “Production of Rolled Steel with Specified Surface Roughness.” Steel in Translation 45(5):371–77.
  • Muñoz, Jairo Alberto, Martina Avalos, N. Schell, H. G. Brokmeier, and Raúl E. Bolmaro. 2021. “Comparison of a Low Carbon Steel Processed by Cold Rolling (CR) and Asymmetrical Rolling (ASR): Heterogeneity in Strain Path, Texture, Microstructure and Mechanical Properties.” Journal of Manufacturing Processes 64(March 2020):557–75.
  • Orlov, Dmitry, Arnaud Pougis, Rimma Lapovok, Laszlo S. Toth, Ilana B. Timokhina, Peter D. Hodgson, Arunansu Haldar, and Debashish Bhattacharjee. 2013. “Asymmetric Rolling of Interstitial-Free Steel Using Differential Roll Diameters. Part I: Mechanical Properties and Deformation Textures.” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 44(9):4346–59.
  • Özakın, Batuhan, Bilal Çolak, and Naci Kurgan. 2021. “Effect of Material Thickness and Reduction Ratio on Roughness Transfer in Skin-Pass Rolling to DC04 Grade Sheet Materials.” Industrial Lubrication and Tribology 73(4):676–82.
  • Özakın, Batuhan and Naci Kurgan. 2021. “Experimental Investigation of Roughness Transfer with Skin-Pass Rolling to High Strength Low Alloy (HSLA) Material.” Arabian Journal for Science and Engineering 46(12):12137–44.
  • Qu, Feijun, Haibo Xie, and Zhengyi Jiang. 2016. “Finite Element Method Analysis of Surface Roughness Transfer in Micro Flexible Rolling.” MATEC Web of Conferences 80:04002.
  • SMS DEMAG. 2003. Influence of Temper Rolling on Material Properties. Zürih.
  • ThyssenKrupp Stahl. 2004. Roughness Measuring of Metal Surfaces. Essen.
  • Vincze, Gabriela, Fabio Simões, and Marilena Butuc. 2020. “Asymmetrical Rolling of Aluminum Alloys and Steels: A Review.” Metals 10(9):1–24.
  • Wauthier, Aurelie, Helene Regle, Jorge Formigoni, and Gwenola Herman. 2009. “The Effects of Asymmetrical Cold Rolling on Kinetics, Grain Size and Texture in IF Steels.” Materials Characterization 60(2):90–95.
  • Wentink, D. J., D. Matthews, N. M. Appelman, and E. M. Toose. 2015. “A Generic Model for Surface Texture Development, Wear and Roughness Transfer in Skin Pass Rolling.” Wear 328–329:167–76.
  • Wu, Chuhan, Liangchi Zhang, Peilei Qu, Shanqing Li, and Zhenglian Jiang. 2018. “A Simple Approach for Analysing the Surface Texture Transfer in Cold Rolling of Metal Strips.” International Journal of Advanced Manufacturing Technology 95(1–4):597–608.
  • Wu, Chuhan, Liangchi Zhang, Peilei Qu, Shanqing Li, and Zhenglian Jiang. 2019. “A New Method for Predicting the Three-Dimensional Surface Texture Transfer in the Skin Pass Rolling of Metal Strips.” Wear 426–427(September 2018):1246–64.
  • Wu, Chuhan, Liangchi Zhang, Peilei Qu, Shanqing Li, Zhenglian Jiang, and Wei Li. 2021. “Surface Texture Transfer in Skin-Pass Rolling with the Effect of Roll Surface Wear.” Wear 476(March):203764.
  • Xu, Dong, Quan Yang, Xiaochen Wang, Hainan He, Youzhao Sun, and Wenpei Li. 2020. “An Experimental Investigation of Steel Surface Topography Transfer by Cold Rolling.” Micromachines 11(10).

An Experimental Investigation into Roughness Transfer in Asymmetrical Rolling of Steel Strips

Year 2023, Volume: 13 Issue: 3, 1070 - 1089, 15.09.2023
https://doi.org/10.31466/kfbd.1289221

Abstract

This study investigated the effect of rolling parameters such as speed, thickness reduction, roll surface roughness, material thickness, surface condition (dry or lubricated), and rolling force on the roughening characterization in asymmetrical rolling. The surface roughness of the samples subjected to rolling tests was measured. The roughness values' average and standard deviation were found, and 3-D scanning images were acquired. Lubricated texturing experiments revealed that lubrication reduced roughness transfer. It was found that the introduction of roughness on the material surface decreased as the rolling speed increased. On the other hand, a higher speed increases the rolling force, which increases the surface roughness. The effect of speed on the standard deviation varies in direct proportion. Furthermore, lubricated rolling produced a more homogenous roughness distribution at higher speeds, while dry rolling produced homogeneous roughness at lower speeds. It was revealed that the rolling force is higher with thicker materials. While the roll roughness did not affect the rolling force using thicker material much, this effect was more pronounced in the very rough roll using thinner material. The standard deviation was lower in smaller reduction ratios using rough and very rough rolls. According to the results, although asymmetrical rolling has some advantages compared to conventional rolling, it was concluded that it is not a suitable method for roughening steel strips.

Project Number

KBÜBAP-22-YL-052

References

  • Beddoes, J. and J. Bibby. 1999. Bulk Deformation Processes.
  • Cho, Jae Hyung, Sang Soo Jeong, Hyoung Wook Kim, and Suk Bong Kang. 2013. “Texture and Microstructure Evolution during the Symmetric and Asymmetric Rolling of AZ31B Magnesium Alloys.” Materials Science and Engineering A 566:40–46.
  • Çolak, Bilal. 2021. “A Comparison of Tonnage-Dependent Shot Blast and Electro-Discharge Texturing Methods.” Surface Topography: Metrology and Properties 9(3):35051.
  • Çolak, Bilal and Naci Kurgan. 2018. “An Experimental Investigation into Roughness Transfer in Skin-Pass Rolling of Steel Strips.” International Journal of Advanced Manufacturing Technology 96(9–12):3321–30.
  • Elkoca, Oktay. 2008. “A Study on the Characteristics of Electrical Discharge Textured Skin Pass Mill Work Roll.” Surface and Coatings Technology 202(12):2765–74.
  • Fajfar, Peter, Alenka Šalej Lah, Jakob Kraner, and Goran Kugler. 2017. “Asymmetric Rolling Process.” Materials and Geoenvironment 64(3):151–60.
  • Kiefer, Thomas and Andreas Kugi. 2008. “An Analytical Approach for Modelling Asymmetrical Hot Rolling of Heavy Plates.” Mathematical and Computer Modelling of Dynamical Systems 14(3):249–67.
  • Kijima, Hideo. 2014. “Influence of Roll Radius on Roughness Transfer in Skin-Pass Rolling of Steel Strip.” Journal of Materials Processing Technology 214(5):1111–19.
  • Kijima, Hideo. 2015. “An Experimental Investigation on the Influence of Lubrication on Roughness Transfer in Skin-Pass Rolling of Steel Strip.” International Journal of Advanced Manufacturing Technology 96(9–12):3321–30.
  • Kimura, Yukio, Masayasu Ueno, and Yutaka Mihara. 2009. “Printing Behavior of Roll Surface Texture to Hot-Dip Galvanized Steel Sheet in Temper Rolling.” 95(5):399–405.
  • Li, R., Q. Zhang, X. Zhang, M. Yu, and B. Wang. 2015. “Control Method for Steel Strip Roughness in Two-Stand Temper Mill Rolling.” Chinese Journal of Mechanical Engineering (English Edition) 28(3):573–79.
  • Liu, Jie and Rudolf Kawalla. 2012. “Influence of Asymmetric Hot Rolling on Microstructure and Rolling Force with Austenitic Steel.” Transactions of Nonferrous Metals Society of China (English Edition) 22(SUPPL.2):s504–11.
  • Mazur, V. L. 2015. “Production of Rolled Steel with Specified Surface Roughness.” Steel in Translation 45(5):371–77.
  • Muñoz, Jairo Alberto, Martina Avalos, N. Schell, H. G. Brokmeier, and Raúl E. Bolmaro. 2021. “Comparison of a Low Carbon Steel Processed by Cold Rolling (CR) and Asymmetrical Rolling (ASR): Heterogeneity in Strain Path, Texture, Microstructure and Mechanical Properties.” Journal of Manufacturing Processes 64(March 2020):557–75.
  • Orlov, Dmitry, Arnaud Pougis, Rimma Lapovok, Laszlo S. Toth, Ilana B. Timokhina, Peter D. Hodgson, Arunansu Haldar, and Debashish Bhattacharjee. 2013. “Asymmetric Rolling of Interstitial-Free Steel Using Differential Roll Diameters. Part I: Mechanical Properties and Deformation Textures.” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 44(9):4346–59.
  • Özakın, Batuhan, Bilal Çolak, and Naci Kurgan. 2021. “Effect of Material Thickness and Reduction Ratio on Roughness Transfer in Skin-Pass Rolling to DC04 Grade Sheet Materials.” Industrial Lubrication and Tribology 73(4):676–82.
  • Özakın, Batuhan and Naci Kurgan. 2021. “Experimental Investigation of Roughness Transfer with Skin-Pass Rolling to High Strength Low Alloy (HSLA) Material.” Arabian Journal for Science and Engineering 46(12):12137–44.
  • Qu, Feijun, Haibo Xie, and Zhengyi Jiang. 2016. “Finite Element Method Analysis of Surface Roughness Transfer in Micro Flexible Rolling.” MATEC Web of Conferences 80:04002.
  • SMS DEMAG. 2003. Influence of Temper Rolling on Material Properties. Zürih.
  • ThyssenKrupp Stahl. 2004. Roughness Measuring of Metal Surfaces. Essen.
  • Vincze, Gabriela, Fabio Simões, and Marilena Butuc. 2020. “Asymmetrical Rolling of Aluminum Alloys and Steels: A Review.” Metals 10(9):1–24.
  • Wauthier, Aurelie, Helene Regle, Jorge Formigoni, and Gwenola Herman. 2009. “The Effects of Asymmetrical Cold Rolling on Kinetics, Grain Size and Texture in IF Steels.” Materials Characterization 60(2):90–95.
  • Wentink, D. J., D. Matthews, N. M. Appelman, and E. M. Toose. 2015. “A Generic Model for Surface Texture Development, Wear and Roughness Transfer in Skin Pass Rolling.” Wear 328–329:167–76.
  • Wu, Chuhan, Liangchi Zhang, Peilei Qu, Shanqing Li, and Zhenglian Jiang. 2018. “A Simple Approach for Analysing the Surface Texture Transfer in Cold Rolling of Metal Strips.” International Journal of Advanced Manufacturing Technology 95(1–4):597–608.
  • Wu, Chuhan, Liangchi Zhang, Peilei Qu, Shanqing Li, and Zhenglian Jiang. 2019. “A New Method for Predicting the Three-Dimensional Surface Texture Transfer in the Skin Pass Rolling of Metal Strips.” Wear 426–427(September 2018):1246–64.
  • Wu, Chuhan, Liangchi Zhang, Peilei Qu, Shanqing Li, Zhenglian Jiang, and Wei Li. 2021. “Surface Texture Transfer in Skin-Pass Rolling with the Effect of Roll Surface Wear.” Wear 476(March):203764.
  • Xu, Dong, Quan Yang, Xiaochen Wang, Hainan He, Youzhao Sun, and Wenpei Li. 2020. “An Experimental Investigation of Steel Surface Topography Transfer by Cold Rolling.” Micromachines 11(10).
There are 27 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Articles
Authors

Bilal Çolak 0000-0002-1988-1464

Zahoor Ahmed 0000-0002-6905-9591

Batuhan Özakın 0000-0003-1754-949X

Naci Kurgan 0000-0001-7297-7249

Project Number KBÜBAP-22-YL-052
Early Pub Date June 15, 2023
Publication Date September 15, 2023
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Çolak, B., Ahmed, Z., Özakın, B., Kurgan, N. (2023). An Experimental Investigation into Roughness Transfer in Asymmetrical Rolling of Steel Strips. Karadeniz Fen Bilimleri Dergisi, 13(3), 1070-1089. https://doi.org/10.31466/kfbd.1289221