Research Article
BibTex RIS Cite

Thermodynamic and Economic Evaluation of a Kalina Cycle

Year 2023, Volume: 13 Issue: 3, 1153 - 1168, 15.09.2023
https://doi.org/10.31466/kfbd.1311665

Abstract

Nowadays, one of the most important issues that countries pay attention to is energy, and energy consumption is increasing rapidly with constantly developing technologies. In order to meet these energy demands, the use of different fossil resource-based power technologies has become widespread. Additional problems such as the depletion of fossil resources and damage to the environment have led to increased in research on the more efficient operation of such technologies. Electricity generation by the Kalina cycle (KC) in medium- and low-temperature heat sources is one of the important technologies. The equipment of the Kalina cycle is a turbine, separator, pump, evaporator, condenser, mixing chamber, throttling valve, and heat exchangers. In this study, a model was created in order to make detailed thermodynamic analyses of the cycle in question, and the properties of all points in the system were calculated analytically using the Engineering Equation Solver (EES) program. The system performance is analyzed in terms of energy and economy depending on the turbine inlet pressure, condenser outlet temperature, and isentropic efficiency of the pump and turbine.

References

  • Arslan, Oguz. (2010). Exergoeconomic evaluation of electricity generation by the medium temperature geothermal resources, using a Kalina cycle: Simav case study. International Journal of Thermal Sciences, 49(9), 1866–1873.
  • Arslan, Oğuz, Köse, R., Alakuş, B., & Özgür, M. A. (2006). Examining of Power Generation Potential in Simav Geothermal Field. Journal of Science and Technology of Dumlupınar University, (012), 57–67.
  • Ashouri, M., Vandani, A. M. K., Mehrpooya, M., Ahmadi, M. H., & Abdollahpour, A. (2015). Techno-economic assessment of a Kalina cycle driven by a parabolic Trough solar collector. Energy Conversion and Management, 105, 1328–1339.
  • Fallah, M., Mahmoudi, S. M. S., Yari, M., & Ghiasi, R. A. (2016). Advanced exergy analysis of the Kalina cycle applied for low temperature enhanced geothermal system. Energy Conversion and Management, 108, 190–201.
  • Fertelli, A. (2022). Electric tariffs and thermal energy storage systems for buildings. European Mechanical Science, 6(4), 257–262.
  • Jeannot, I., Rahman, M. M., Saat, A., Faizal, H. M., & Wahid, M. A. (2021). Thermodynamic Evaluation of a Solar Based Kalina Cycle.
  • Kalina, A. I. (1983). Combined cycle and waste heat recovery power systems based on a novel thermodynamic energy cycle utilizing low-temperature heat for power generation. In Turbo Expo: Power for Land, Sea, and Air (Vol. 79368, p. V001T02A003). American Society of Mechanical Engineers.
  • Kim, K. H., Ko, H. J., & Han, C. H. (2020). Exergy Analysis of Kalina and Kalina Flash Cycles Driven by Renewable Energy. Applied Sciences, 10(5), 1813.
  • Koç, Y., & Yağlı, H. (2020). Isı-güç kombine sistemlerinde kullanılan kalina çevriminin enerji ve ekserji analizi. Politeknik Dergisi.
  • Little, A. B., & Garimella, S. (2011). Comparative assessment of alternative cycles for waste heat recovery and upgrade. Energy, 36(7), 4492–4504. Retrieved from https://doi.org/10.1016/j.energy.2011.03.069
  • Liu, C., He, C., Gao, H., Xie, H., Li, Y., Wu, S., & Xu, J. (2013). The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment. Energy, 56, 144–154. Retrieved from https://doi.org/10.1016/j.energy.2013.04.045
  • Madhawa Hettiarachchi, H. D., Golubovic, M., Worek, W. M., & Ikegami, Y. (2007). The performance of the Kalina cycle system 11 (KCS-11) with low-temperature heat sources.
  • Mahmoudi, S. M. S., Pourreza, A., Akbari, A. D., & Yari, M. (2016). Exergoeconomic evaluation and optimization of a novel combined augmented Kalina cycle/gas turbine-modular helium reactor. Applied Thermal Engineering, 109, 109–120. Retrieved from https://doi.org/10.1016/j.applthermaleng.2016.08.011
  • Marston, C. H. (1990). Parametric analysis of the Kalina cycle.
  • Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2010). Fundamentals of engineering thermodynamics. John Wiley & Sons.
  • Mosaffa, A. H., Hasani Mokarram, N., & Garousi Farshi, L. (2017). Thermoeconomic analysis of a new combination of ammonia/water power generation cycle with GT-MHR cycle and LNG cryogenic exergy. Applied Thermal Engineering, 124, 1343–1353. Retrieved from https://doi.org/10.1016/j.applthermaleng.2017.06.126
  • Özahi, E., & Tozlu, A. (2020). Optimization of an adapted Kalina cycle to an actual municipal solid waste power plant by using NSGA-II method. Renewable Energy, 149, 1146–1156. Retrieved from https://doi.org/10.1016/j.renene.2019.10.102
  • Peris, B., Navarro-Esbrí, J., & Molés, F. (2013). Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery. Applied Thermal Engineering, 61(2), 364–371. Retrieved from https://doi.org/10.1016/j.applthermaleng.2013.08.016
  • Rodríguez, C. E. C., Palacio, J. C. E., Venturini, O. J., Lora, E. E. S., Cobas, V. M., Dos Santos, D. M., … Gialluca, V. (2013). Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil. Applied Thermal Engineering, 52(1), 109–119.
  • Sayyaadi, H., Khosravanifard, Y., & Sohani, A. (2020). Solutions for thermal energy exploitation from the exhaust of an industrial gas turbine using optimized bottoming cycles. Energy Conversion and Management, 207(October 2019), 112523. Retrieved from https://doi.org/10.1016/j.enconman.2020.112523
  • Seckin, C. (2018). Thermodynamic analysis of a combined power/refrigeration cycle: Combination of Kalina cycle and ejector refrigeration cycle. Energy Conversion and Management, 157(August 2017), 631–643. Retrieved from https://doi.org/10.1016/j.enconman.2017.12.047
  • Seckin, C. (2023). Energy and Exergy Analysis of an Innovative Power/Refrigeration Cycle: Kalina Cycle and Ejector Refrigeration Cycle. International Journal of Advances in Engineering and Pure Sciences, 35(2), 193–202.
  • Senturk Acar, M. (2021). Multi-stage artificial neural network structure-based optimization of geothermal energy powered Kalina cycle. Journal of Thermal Analysis and Calorimetry, 145(3), 829–849.
  • Sentürk, M. (2020). Thermodynamic and economic analysis of geothermal energy powered kalina cycle. Isı Bilimi ve Tekniği Dergisi, 40(2), 335–347.
  • Shu, G., Liu, L., Tian, H., Wei, H., & Xu, X. (2013). Performance comparison and working fluid analysis of subcritical and transcritical dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery. Energy Conversion and Management, 74, 35–43. Retrieved from https://doi.org/10.1016/j.enconman.2013.04.037
  • Usvika, R., Rifaldi, M., & Noor, A. (2009). Energy and exergy analysis of kalina cycle system (KCS) 34 with mass fraction ammonia-water mixture variation. Journal of Mechanical Science and Technology, 23(7), 1871–1876.
  • Wang, J., Yan, Z., Zhou, E., & Dai, Y. (2013). Parametric analysis and optimization of a Kalina cycle driven by solar energy. Applied Thermal Engineering, 50(1), 408–415.
  • Wang, Y., Liu, Q., Lei, J., & Jin, H. (2015). Performance analysis of a parabolic trough solar collector with non-uniform solar flux conditions. International Journal of Heat and Mass Transfer, 82, 236–249.
  • Yaniktepe, B., Osman, K., & Parlak, T. K. (2021). Enerji tüketimi ve ekonomik büyüme ilişkisi: Türkiye. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(3), 452–465.
  • Yılmaz, F. (2023). Modeling of the Thermodynamic and Environmental Impact Assessment of a Geothermal Energy-Based Power and Hydrogen Generation Plant. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(2), 654–668.
  • Yücel, E., Doğanay, B., Gökalp, F., Baycık, N., & Durmuşoğlu, Y. (2021). Integration of the Kalina Cycle in a Tanker Ship and Analysis of its Effect on Energy Efficiency. Seatific, 1(1), 26–35.
  • Yüksel, Y. E., & Öztürk, M. (2020). Jeotermal enerji destekli çok fonksiyonlu enerji üretim sisteminin termodinamik analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 113–121.
  • Zhang, X., He, M., & Zhang, Y. (2012). A review of research on the Kalina cycle. Renewable and Sustainable Energy Reviews, 16(7), 5309–5318.
  • Zhang, Y., He, M., Jia, Z., & Liu, X. (2008). First law-based thermodynamic analysis on Kalina cycle. Frontiers of Energy and Power Engineering in China, 2(2), 145–151.

Bir Kalina Çevriminin Termodinamik ve Ekonomik Açıdan Değerlendirilmesi

Year 2023, Volume: 13 Issue: 3, 1153 - 1168, 15.09.2023
https://doi.org/10.31466/kfbd.1311665

Abstract

Günümüzde, ülkelerin en önemli dikkat ettiği konulardan bir tanesi enerjidir ve sürekli gelişen teknolojilerle enerji tüketimi de hızla artış göstermektedir. Bu taleplerin karşılanması için fosil kaynak esaslı farklı güç teknolojilerinin kullanımı yaygınlaşmıştır. Fosil kaynakların, tükenecek olması, çevreye zarar vermesi gibi farklı problemler, bu tür teknolojilerin daha verimli çalıştırılmasına yönelik araştırmaların artmasına neden olmuştur. Orta ve düşük sıcaklıklı ısı kaynaklarında Kalina çevrimiyle (KC) elektrik üretimi önemli teknolojilerdendir. Kalina çevrimini oluşturan ekipmanlar, türbin, seperatör, pompa, buharlaştırıcı, kondenser, karışım odası, kısma valfi ve ısı değiştiricileridir. Bu çalışmada, ele alınan çevrimin detaylı termodinamik analizlerini yapabilmek için bir model oluşturulmuş ve Mühendislik Denklem Çözücüsü (EES) programı kullanılarak sistemde bulunan tüm noktaların özellikleri analitik olarak hesaplanmıştır. Sistemin türbin giriş basıncı, kondenser çıkış sıcaklığı, pompa ve türbinin izentropik verimlerine bağlı olarak sistem performansı enerji ve ekonomik açıdan analiz edilmiştir.

References

  • Arslan, Oguz. (2010). Exergoeconomic evaluation of electricity generation by the medium temperature geothermal resources, using a Kalina cycle: Simav case study. International Journal of Thermal Sciences, 49(9), 1866–1873.
  • Arslan, Oğuz, Köse, R., Alakuş, B., & Özgür, M. A. (2006). Examining of Power Generation Potential in Simav Geothermal Field. Journal of Science and Technology of Dumlupınar University, (012), 57–67.
  • Ashouri, M., Vandani, A. M. K., Mehrpooya, M., Ahmadi, M. H., & Abdollahpour, A. (2015). Techno-economic assessment of a Kalina cycle driven by a parabolic Trough solar collector. Energy Conversion and Management, 105, 1328–1339.
  • Fallah, M., Mahmoudi, S. M. S., Yari, M., & Ghiasi, R. A. (2016). Advanced exergy analysis of the Kalina cycle applied for low temperature enhanced geothermal system. Energy Conversion and Management, 108, 190–201.
  • Fertelli, A. (2022). Electric tariffs and thermal energy storage systems for buildings. European Mechanical Science, 6(4), 257–262.
  • Jeannot, I., Rahman, M. M., Saat, A., Faizal, H. M., & Wahid, M. A. (2021). Thermodynamic Evaluation of a Solar Based Kalina Cycle.
  • Kalina, A. I. (1983). Combined cycle and waste heat recovery power systems based on a novel thermodynamic energy cycle utilizing low-temperature heat for power generation. In Turbo Expo: Power for Land, Sea, and Air (Vol. 79368, p. V001T02A003). American Society of Mechanical Engineers.
  • Kim, K. H., Ko, H. J., & Han, C. H. (2020). Exergy Analysis of Kalina and Kalina Flash Cycles Driven by Renewable Energy. Applied Sciences, 10(5), 1813.
  • Koç, Y., & Yağlı, H. (2020). Isı-güç kombine sistemlerinde kullanılan kalina çevriminin enerji ve ekserji analizi. Politeknik Dergisi.
  • Little, A. B., & Garimella, S. (2011). Comparative assessment of alternative cycles for waste heat recovery and upgrade. Energy, 36(7), 4492–4504. Retrieved from https://doi.org/10.1016/j.energy.2011.03.069
  • Liu, C., He, C., Gao, H., Xie, H., Li, Y., Wu, S., & Xu, J. (2013). The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment. Energy, 56, 144–154. Retrieved from https://doi.org/10.1016/j.energy.2013.04.045
  • Madhawa Hettiarachchi, H. D., Golubovic, M., Worek, W. M., & Ikegami, Y. (2007). The performance of the Kalina cycle system 11 (KCS-11) with low-temperature heat sources.
  • Mahmoudi, S. M. S., Pourreza, A., Akbari, A. D., & Yari, M. (2016). Exergoeconomic evaluation and optimization of a novel combined augmented Kalina cycle/gas turbine-modular helium reactor. Applied Thermal Engineering, 109, 109–120. Retrieved from https://doi.org/10.1016/j.applthermaleng.2016.08.011
  • Marston, C. H. (1990). Parametric analysis of the Kalina cycle.
  • Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2010). Fundamentals of engineering thermodynamics. John Wiley & Sons.
  • Mosaffa, A. H., Hasani Mokarram, N., & Garousi Farshi, L. (2017). Thermoeconomic analysis of a new combination of ammonia/water power generation cycle with GT-MHR cycle and LNG cryogenic exergy. Applied Thermal Engineering, 124, 1343–1353. Retrieved from https://doi.org/10.1016/j.applthermaleng.2017.06.126
  • Özahi, E., & Tozlu, A. (2020). Optimization of an adapted Kalina cycle to an actual municipal solid waste power plant by using NSGA-II method. Renewable Energy, 149, 1146–1156. Retrieved from https://doi.org/10.1016/j.renene.2019.10.102
  • Peris, B., Navarro-Esbrí, J., & Molés, F. (2013). Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery. Applied Thermal Engineering, 61(2), 364–371. Retrieved from https://doi.org/10.1016/j.applthermaleng.2013.08.016
  • Rodríguez, C. E. C., Palacio, J. C. E., Venturini, O. J., Lora, E. E. S., Cobas, V. M., Dos Santos, D. M., … Gialluca, V. (2013). Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil. Applied Thermal Engineering, 52(1), 109–119.
  • Sayyaadi, H., Khosravanifard, Y., & Sohani, A. (2020). Solutions for thermal energy exploitation from the exhaust of an industrial gas turbine using optimized bottoming cycles. Energy Conversion and Management, 207(October 2019), 112523. Retrieved from https://doi.org/10.1016/j.enconman.2020.112523
  • Seckin, C. (2018). Thermodynamic analysis of a combined power/refrigeration cycle: Combination of Kalina cycle and ejector refrigeration cycle. Energy Conversion and Management, 157(August 2017), 631–643. Retrieved from https://doi.org/10.1016/j.enconman.2017.12.047
  • Seckin, C. (2023). Energy and Exergy Analysis of an Innovative Power/Refrigeration Cycle: Kalina Cycle and Ejector Refrigeration Cycle. International Journal of Advances in Engineering and Pure Sciences, 35(2), 193–202.
  • Senturk Acar, M. (2021). Multi-stage artificial neural network structure-based optimization of geothermal energy powered Kalina cycle. Journal of Thermal Analysis and Calorimetry, 145(3), 829–849.
  • Sentürk, M. (2020). Thermodynamic and economic analysis of geothermal energy powered kalina cycle. Isı Bilimi ve Tekniği Dergisi, 40(2), 335–347.
  • Shu, G., Liu, L., Tian, H., Wei, H., & Xu, X. (2013). Performance comparison and working fluid analysis of subcritical and transcritical dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery. Energy Conversion and Management, 74, 35–43. Retrieved from https://doi.org/10.1016/j.enconman.2013.04.037
  • Usvika, R., Rifaldi, M., & Noor, A. (2009). Energy and exergy analysis of kalina cycle system (KCS) 34 with mass fraction ammonia-water mixture variation. Journal of Mechanical Science and Technology, 23(7), 1871–1876.
  • Wang, J., Yan, Z., Zhou, E., & Dai, Y. (2013). Parametric analysis and optimization of a Kalina cycle driven by solar energy. Applied Thermal Engineering, 50(1), 408–415.
  • Wang, Y., Liu, Q., Lei, J., & Jin, H. (2015). Performance analysis of a parabolic trough solar collector with non-uniform solar flux conditions. International Journal of Heat and Mass Transfer, 82, 236–249.
  • Yaniktepe, B., Osman, K., & Parlak, T. K. (2021). Enerji tüketimi ve ekonomik büyüme ilişkisi: Türkiye. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(3), 452–465.
  • Yılmaz, F. (2023). Modeling of the Thermodynamic and Environmental Impact Assessment of a Geothermal Energy-Based Power and Hydrogen Generation Plant. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(2), 654–668.
  • Yücel, E., Doğanay, B., Gökalp, F., Baycık, N., & Durmuşoğlu, Y. (2021). Integration of the Kalina Cycle in a Tanker Ship and Analysis of its Effect on Energy Efficiency. Seatific, 1(1), 26–35.
  • Yüksel, Y. E., & Öztürk, M. (2020). Jeotermal enerji destekli çok fonksiyonlu enerji üretim sisteminin termodinamik analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 113–121.
  • Zhang, X., He, M., & Zhang, Y. (2012). A review of research on the Kalina cycle. Renewable and Sustainable Energy Reviews, 16(7), 5309–5318.
  • Zhang, Y., He, M., Jia, Z., & Liu, X. (2008). First law-based thermodynamic analysis on Kalina cycle. Frontiers of Energy and Power Engineering in China, 2(2), 145–151.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Osman Kara 0000-0003-1501-677X

Önder Kaşka 0000-0002-7284-2093

Publication Date September 15, 2023
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Kara, O., & Kaşka, Ö. (2023). Bir Kalina Çevriminin Termodinamik ve Ekonomik Açıdan Değerlendirilmesi. Karadeniz Fen Bilimleri Dergisi, 13(3), 1153-1168. https://doi.org/10.31466/kfbd.1311665