Bu çalışmada, Gidya kullanılarak Everzol Yellow 3RS boyar maddesinin adsorpsiyon prosesi ile giderimi araştırılmıştır. Adsorpsiyon sürecine pH’ın (3–11), temas süresinin (5–300 dakika), adsorban dozunun (2–16 g/L), başlangıç konsantrasyonunun (10-50 mg/L) ve sıcaklığın (25-60°C) etkisi incelenmiştir. Adsorpsiyon prosesinde 10 g/L adsorbent dozu, orijinal pH değeri, 90 dakika temas süresi, 10 mg/L boyar madde konsantrasyonu ve ortam sıcaklığı optimum maksimum giderim veriminin (%90.96) sağlandığı koşullar olarak belirlenmiştir. Gidya üzerindeki adsorpsiyon sürecinin mekanizmasını anlamak için kinetik ve denge modelleri uygulanmıştır. Kinetik ve izoterm deneylerinden elde edilen sonuçlara göre, Everzol Yellow 3RS boyar maddesinin Gidya üzerine adsorpsiyonu için adsorpsiyon kinetiği ikinci derece reaksiyon modeli modeli ile adsorpsiyon dengesi ise Freundlich izoterm modeli ile iyi bir şekilde tanımlanmıştır. Bu, hız sınırlayıcı adımın difüzyondan ziyade kemisorpsiyon olabileceği ve hem film difüzyonu hem de parçacık içi difüzyon süreçlerinin kayda değer olduğu anlamına gelmektedir. Ayrıca, adsorpsiyon mekanizmasının düzgün bir dağılım göstermediğini ve tek bir katmanla sınırlı olmadığını göstermiştir. Sonuç olarak, Gidya’nın potansiyel bir adsorbent olarak boyar madde gideriminde kullanılabilir olduğu görülmüştür.
Yapılan çalışmada araştırma ve yayın etiğine uyulmuştur.
Supporting Institution
Giresun Üniversitesi - Bilimsel Araştırma Projeleri Koordinasyon Birimi
Project Number
FEN-BAP-A-250620-63
Thanks
Bu çalışma, Giresun Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (Proje FEN-BAP-A-250620-63) tarafından finanse edilmiştir. Araştırma olanağını sağladığı için Giresun Üniversitesi’ne teşekkür ediyorum.
References
Abbou, B., Lebkiri, I., Ouaddari, H., El Amri, A., Achibat, F.E., Kadiri, L., Ouass, A., Lebkiri, A., Rifi, E.H., (2023). Improved removal of methyl orange dye by adsorption using modified clay: Combined experimental study using surface response methodology. Inorg. Chem. Commun. 155, 111127. https://doi.org/10.1016/j.inoche.2023.111127
Acemioglu, B., (2004). Adsorption of Congo red from aqueous solution onto calcium-rich fly ash. J. Colloid Interface Sci., 274, 371-379.
Akbal, F., Kuleyin, A., (2011). Decolorization of levafix brilliant blue E-B by electrocoagulation method. Environ. Prog. Sustain. Energy, 30, 29–36. https://doi.org/10.1002/ep.10437
Ameri, Atefeh, Faramarzi, M.A., Tarighi, S., Shakibaie, M., Ameri, Alieh, Ramezani-Sarbandi, A., Forootanfar, H., (2023). Removal of dyes by Trametes versicolor laccase immobilized on NaY-zeolite. Chem. Eng. Res. Des. 197, 240–253. https://doi.org/10.1016/j.cherd.2023.07.014
Armağan, B., Turan, M., Çelik, M.S., (2004). Equilibrium studies on the adsorption of reactive azo dyes into zeolite. Desalination, 170, 33-39.
Aydın Temel, F., (2018). Endüstriyel Sızıntı Suyundan Pb(II) Giderimi İçin Genleştirilmiş Perlit Kullanımı: Kinetik Çalışmalar. Türk Tarım – Gıda Bilim ve Teknol. Derg.. 6, 360–364.
Aydın Temel, F., (2017). Kinetics and thermodynamics of the Ni(II) ions sorption from industrial wastewater by gyttja. Int. J. Exergy, 23, 279–297. https://doi.org/10.1504/IJEX.2017.086168
Aydın Temel, F., Avci, E., Turan, N.G., (2022). Investigation of Copper(Ii), Zinc(Ii) and Lead(Ii) Removal Onto Expanded Perlite By Adsorption From the Wastes of Metal Casting Industry: Statistical Modeling and Optimization. Environ. Eng. Manag. J. 21, 757–767. https://doi.org/10.30638/eemj.2022.070
Aydın Temel, F., Avcı, E., Turan, N.G., (2018a). Full factorial experimental design of Ni(II) removal from industrial wastewater by adsorption. Int. J. Glob. Warm. 16, 299–319. https://doi.org/10.1504/IJGW.2018.095388
Aydın Temel, F., Kuleyin, A., (2016). Ammonium removal from landfill leachate using natural zeolite: kinetic, equilibrium, and thermodynamic studies. Desalin. Water Treat. 57, 23873–23892. https://doi.org/10.1080/19443994.2015.1136964
Aydın Temel, F., Turan, N.G., Ozgonenel, O., Ardali, Y., (2018b). The use of response surface methodology for modelling of lead (II) removal from industrial waste by pumice and vermiculite. Int. J. Glob. Warm. 15, 175–189. https://doi.org/10.1504/IJGW.2018.092895
Aydın Temel, F., Turan, N.G., Ozgonenel, O., Ardalı, Y., (2018c). Heavy metal removal with pure and biochar rice husks: Modelling and optimisation using Box-Behnken design. Int. J. Glob. Warm. 16, 1–17. https://doi.org/10.1504/IJGW.2018.094307
Balcik-Canbolat, C., Olmez-Hanci, T., Sengezer, C., Sakar, H., Karagunduz, A., Keskinler, B., (2019). A combined treatment approach for dye and sulfate rich textile nanofiltration membrane concentrate. J. Water Process Eng. 32, 100919. https://doi.org/10.1016/j.jwpe.2019.100919
Barredo-Damas, S., Iborra-Clar, M.I., Bes-Pia, A., Alcaina-Miranda, M.I., Mendoza-Roca, J.A., Iborra-Clar, A., (2005). Study of preozonation influence on the physical-chemical treatment of textile wastewater. Desalination, 182, 267–274. https://doi.org/10.1016/j.desal.2005.04.017
Bharath Balji, G., Surya, A., Govindaraj, P., Monisha Ponsakthi, G., (2022). Utilization of fly ash for the effective removal of hazardous dyes from textile effluent. Inorg. Chem. Commun. 143, 109708. https://doi.org/10.1016/j.inoche.2022.109708
Buscio, V., López-Grimau, V., Álvarez, M.D., Gutiérrez-Bouzán, C., (2019). Reducing the environmental impact of textile industry by reusing residual salts and water: ECUVal system. Chem. Eng. J. 373, 161–170. https://doi.org/10.1016/j.cej.2019.04.146
Capar, G., Yetis, U., Yilmaz, L., (2006). Membrane based strategies for the pre-treatment of acid dye bath wastewaters. J. Hazard. Mater. 135, 423–430. https://doi.org/10.1016/j.jhazmat.2005.12.008
Chen, Y., Zhang, D., (2014). Adsorption kinetics, isotherm and thermodynamics studies of flavones from Vaccinium Bracteatum Thunb leaves on NKA-2 resin. Chem. Eng. J. 254, 579–585. https://doi.org/10.1016/j.cej.2014.05.120
Cüce, H., Aydın Temel, F., (2021). Reuse of agro-wastes to treat wastewater containing dyestuff: Sorption process with potato and pumpkin seed wastes. Int. J. Glob. Warm. 24, 14–37. https://doi.org/10.1504/ijgw.2021.115108
de Oliveira Neto, G.C., Ferreira Correia, J.M., Silva, P.C., de Oliveira Sanches, A.G., Lucato, W.C., (2019). Cleaner Production in the textile industry and its relationship to sustainable development goals. J. Clean. Prod. 228, 1514–1525. https://doi.org/10.1016/j.jclepro.2019.04.334
Dikici, H., Saltali, K., Bingölbalı, S. (2010). Equilibrium and Kinetics Characteristics of Copper (II) Sorption onto Gyttja. Bull Environ Contam Toxicol 84, 147–151. https://doi.org/10.1007/s00128-009-9899-x
Elver, O., Aydın Temel, F., Cagcag Yolcu, O., Akbal, F., Kuleyin, A., (2023). Modeling of Cu(II) adsorption on the activated Phragmites australis waste by fuzzy-based and neural network-based inference systems. J. Ind. Eng. Chem. https://doi.org/10.1016/j.jiec.2023.08.031
GilPavas, E., Dobrosz-Gómez, I., Gómez-García, M.Á., (2012). Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: The Response Surface Methodology as the optimization tool. Water Sci. Technol. 65, 1795–1800. https://doi.org/10.2166/wst.2012.078
Ihaddaden, S., Aberkane, D., Boukerroui, A., Robert, D., (2022). Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). J. Water Process Eng. 49, 102952. https://doi.org/10.1016/j.jwpe.2022.102952
Khandegar, V., Saroha, A.K., (2013). Electrocoagulation for the treatment of textile industry effluent - A review. J. Environ. Manage. 128, 949–963. https://doi.org/10.1016/j.jenvman.2013.06.043
Kim, T.H., Park, C., Kim, S., (2005). Water recycling from desalination and purification process of reactive dye manufacturing industry by combined membrane filtration. J. Clean. Prod. 13, 779–786. https://doi.org/10.1016/j.jclepro.2004.02.044
Kuleyin, A., Aydın, F., (2011). Removal of Reactive Textile Dyes (Remazol Brillant Blue R and Remazol Yellow) by Surfactant-Modified Natural Zeolite. Environ. Prog. Sustain. Energy, 30, 141–151. https://doi.org/10.1002/ep
Kuleyin, A., Gök, A., Akbal, F., (2021). Treatment of textile industry wastewater by electro-Fenton process using graphite electrodes in batch and continuous mode. J. Environ. Chem. Eng. 9. https://doi.org/10.1016/j.jece.2020.104782
Liu, Y., Tan, Y., Cheng, Z., Liu, S., Ren, Y., Chen, X., Fan, M., Shen, Z., (2022). Quantitative structure-activity relationship (QSAR) guides the development of dye removal by coagulation. J. Hazard. Mater. 438, 129448. https://doi.org/10.1016/j.jhazmat.2022.129448
Mallakpour, S., Sirous, F., Dinari, M., (2023). Comparative study for removal of cationic and anionic dyes using alginate-based hydrogels filled with citric acid-sawdust/UiO-66-NH2 hybrid. Int. J. Biol. Macromol. 238, 124034. https://doi.org/10.1016/j.ijbiomac.2023.124034
Olgun, A., Atar, N., (2012). Equilibrium, thermodynamic and kinetic studies for the adsorption of lead (II) and nickel (II) onto clay mixture containing boron impurity. J. Ind. Eng. Chem. 18, 1751–1757. https://doi.org/10.1016/j.jiec.2012.03.020
Ozdemir, O., Armagan, B., Turan, M., Çelik, M. S. (2004). Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals. Dyes and Pigments, 62(1), 49–60. doi:10.1016/j.dyepig.2003.11.007
Öden, M.K., Şahinkaya, S., Küçükçongar, S. (2017). Pirina kullanılarak adsorpsiyon prosesinde renk giderimi, Cumhuriyet Sci. J., 38-4, 215-219.
Sala, M., Gutiérrez-Bouzán, M.C., (2014). Electrochemical treatment of industrial wastewater and effluent reuse at laboratory and semi-industrial scale. J. Clean. Prod. 65, 458–464. https://doi.org/10.1016/j.jclepro.2013.08.006
Salazar, R., Gallardo-Arriaza, J., Vidal, J., Rivera-Vera, C., Toledo-Neira, C., Sandoval, M.A., Cornejo-Ponce, L., Thiam, A., (2019). Treatment of industrial textile wastewater by the solar photoelectro-Fenton process: Influence of solar radiation and applied current. Sol. Energy, 190, 82–91. https://doi.org/10.1016/j.solener.2019.07.072
Salman, T., Aydın Temel, F., Turan, G., Ardalı, Y., (2014). Removal of lead (II) from aqueous solution by batch adsorption on various inexpensive adsorbents using experimental design. Desalin. Water Treat. 56, 1566–1575. https://doi.org/10.1080/19443994.2014.951073
Salman, T., Aydın Temel, F., Turan, N.G., Ardali, Y., (2016). Adsorption of lead (II) ions onto diatomite from aqueous solutions: Mechanism, isotherm and kinetic studies. Glob. Nest J. 18, 1–10.
Saltalı, K., Alhashemi, M. (2022). Gidya,Leonardit ve Kompost’un Çinko Sorpsiyon Özelliklerinin Belirlenmesi, Turkish Journal of Agriculture-Food Science and Technology, 10, 2751-2757. https://doi.org/10.24925/turjaf.v10isp1.2751-2757.5720
Shen, Y., Han, S., Xu, Q., Wang, Y., Xu, Z., Zhao, B., Zhang, R., (2016). Optimizing degradation of Reactive Yellow 176 by dielectric barrier discharge plasma combined with TiO2 nano-particles prepared using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 60, 302–312.
Soliman, N.K., Moustafa, A.F., Aboud, A.A., Halim, K.S.A., (2019). Effective utilization of Moringa seeds waste as a new green environmental adsorbent for removal of industrial toxic dyes. J. Mater. Res. Technol. 8, 1798–1808. https://doi.org/10.1016/j.jmrt.2018.12.010
Stavrinou, A., Aggelopoulos, C.A., Tsakiroglou, C.D., (2018). Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: Adsorption kinetics and equilibrium isotherms as a tool. J. Environ. Chem. Eng. 6, 6958–6970. https://doi.org/10.1016/j.jece.2018.10.063
Sumanjit, K., Rani, S., Mahajan, R.K., (2016). Equilibrium, kinetics and thermodynamic parameters for adsorptive removal of dye Basic Blue 9 by ground nut shells and Eichhornia. Arab. J. Chem. 9, S1464–S1477. https://doi.org/10.1016/j.arabjc.2012.03.013
Tsai, W. T., Chang, Y. M., Lai, C. W., Lo, C. C., (2005). Adsorption of ethyl violet dye in aqueous solution by regenerated spent bleaching earth. J. Colloid Interface Sci. 289, 333-338.
Vargas, A.M.M., Cazetta, A.L., Kunita, M.H., Silva, T.L., Almeida, V.C., (2011). Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): Study of adsorption isotherms and kinetic models. Chem. Eng. J. 168, 722–730. https://doi.org/10.1016/j.cej.2011.01.067
Yadav, M., Thakore, S., Jadeja, R., (2022). Removal of organic dyes using Fucus vesiculosus seaweed bioadsorbent an ecofriendly approach: Equilibrium, kinetics and thermodynamic studies. Environ. Chem. Ecotoxicol. 4, 67–77. https://doi.org/10.1016/j.enceco.2021.12.003
Zazou, H., Afanga, H., Akhouairi, S., Ouchtak, H., Addi, A.A., Akbour, R.A., Assabbane, A., Douch, J., Elmchaouri, A., Duplay, J., Jada, A., Hamdani, M., (2019). Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process. J. Water Process Eng. 28, 214–221. https://doi.org/10.1016/j.jwpe.2019.02.006
Zazycki, M.A., Godinho, M., Perondi, D., Foletto, E.L., Collazzo, G.C., Dotto, G.L., (2018). New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. J. Clean. Prod. 171, 57–65. https://doi.org/10.1016/j.jclepro.2017.10.007
Adsorption of Everzol Yellow 3RS dyestuff onto Gyttja: Kinetic and Isotherm Studies
Year 2024,
Volume: 14 Issue: 1, 194 - 210, 15.03.2024
In this study, the removal of Everzol Yellow 3RS dye by adsorption process was investigated by using Gyttja. The effects of pH (3–11), contact time (5–300 min), adsorbent dose (2–16 g/L), initial concentration (10–50 mg/L), and temperature (25–60°C) on the adsorption process were investigated. In the adsorption process, 10 g/L adsorbent dose, original pH value, 90 minutes contact time, 10 mg/L dye concentration, and ambient temperature were determined as the conditions where the maximum removal efficiency (90.96%) was achieved. To understand the mechanism of the adsorption process on Gyttja, kinetic and equilibrium models were applied. According to the results obtained from the kinetic and isotherm experiments, the adsorption kinetics for the adsorption of Everzol Yellow 3RS dye onto Gyttja were well described by the pseudo-second-order reaction model and the adsorption equilibrium by the Freundlich isotherm model. This means that the rate-limiting step may be chemisorption rather than diffusion, and both film diffusion and intra-particle diffusion processes are significant. It also showed that the adsorption mechanism is not uniformly distributed and is not limited to a single layer. As a result, it was observed that Gyttja can be used as a potential adsorbent in dyestuff removal.
Abbou, B., Lebkiri, I., Ouaddari, H., El Amri, A., Achibat, F.E., Kadiri, L., Ouass, A., Lebkiri, A., Rifi, E.H., (2023). Improved removal of methyl orange dye by adsorption using modified clay: Combined experimental study using surface response methodology. Inorg. Chem. Commun. 155, 111127. https://doi.org/10.1016/j.inoche.2023.111127
Acemioglu, B., (2004). Adsorption of Congo red from aqueous solution onto calcium-rich fly ash. J. Colloid Interface Sci., 274, 371-379.
Akbal, F., Kuleyin, A., (2011). Decolorization of levafix brilliant blue E-B by electrocoagulation method. Environ. Prog. Sustain. Energy, 30, 29–36. https://doi.org/10.1002/ep.10437
Ameri, Atefeh, Faramarzi, M.A., Tarighi, S., Shakibaie, M., Ameri, Alieh, Ramezani-Sarbandi, A., Forootanfar, H., (2023). Removal of dyes by Trametes versicolor laccase immobilized on NaY-zeolite. Chem. Eng. Res. Des. 197, 240–253. https://doi.org/10.1016/j.cherd.2023.07.014
Armağan, B., Turan, M., Çelik, M.S., (2004). Equilibrium studies on the adsorption of reactive azo dyes into zeolite. Desalination, 170, 33-39.
Aydın Temel, F., (2018). Endüstriyel Sızıntı Suyundan Pb(II) Giderimi İçin Genleştirilmiş Perlit Kullanımı: Kinetik Çalışmalar. Türk Tarım – Gıda Bilim ve Teknol. Derg.. 6, 360–364.
Aydın Temel, F., (2017). Kinetics and thermodynamics of the Ni(II) ions sorption from industrial wastewater by gyttja. Int. J. Exergy, 23, 279–297. https://doi.org/10.1504/IJEX.2017.086168
Aydın Temel, F., Avci, E., Turan, N.G., (2022). Investigation of Copper(Ii), Zinc(Ii) and Lead(Ii) Removal Onto Expanded Perlite By Adsorption From the Wastes of Metal Casting Industry: Statistical Modeling and Optimization. Environ. Eng. Manag. J. 21, 757–767. https://doi.org/10.30638/eemj.2022.070
Aydın Temel, F., Avcı, E., Turan, N.G., (2018a). Full factorial experimental design of Ni(II) removal from industrial wastewater by adsorption. Int. J. Glob. Warm. 16, 299–319. https://doi.org/10.1504/IJGW.2018.095388
Aydın Temel, F., Kuleyin, A., (2016). Ammonium removal from landfill leachate using natural zeolite: kinetic, equilibrium, and thermodynamic studies. Desalin. Water Treat. 57, 23873–23892. https://doi.org/10.1080/19443994.2015.1136964
Aydın Temel, F., Turan, N.G., Ozgonenel, O., Ardali, Y., (2018b). The use of response surface methodology for modelling of lead (II) removal from industrial waste by pumice and vermiculite. Int. J. Glob. Warm. 15, 175–189. https://doi.org/10.1504/IJGW.2018.092895
Aydın Temel, F., Turan, N.G., Ozgonenel, O., Ardalı, Y., (2018c). Heavy metal removal with pure and biochar rice husks: Modelling and optimisation using Box-Behnken design. Int. J. Glob. Warm. 16, 1–17. https://doi.org/10.1504/IJGW.2018.094307
Balcik-Canbolat, C., Olmez-Hanci, T., Sengezer, C., Sakar, H., Karagunduz, A., Keskinler, B., (2019). A combined treatment approach for dye and sulfate rich textile nanofiltration membrane concentrate. J. Water Process Eng. 32, 100919. https://doi.org/10.1016/j.jwpe.2019.100919
Barredo-Damas, S., Iborra-Clar, M.I., Bes-Pia, A., Alcaina-Miranda, M.I., Mendoza-Roca, J.A., Iborra-Clar, A., (2005). Study of preozonation influence on the physical-chemical treatment of textile wastewater. Desalination, 182, 267–274. https://doi.org/10.1016/j.desal.2005.04.017
Bharath Balji, G., Surya, A., Govindaraj, P., Monisha Ponsakthi, G., (2022). Utilization of fly ash for the effective removal of hazardous dyes from textile effluent. Inorg. Chem. Commun. 143, 109708. https://doi.org/10.1016/j.inoche.2022.109708
Buscio, V., López-Grimau, V., Álvarez, M.D., Gutiérrez-Bouzán, C., (2019). Reducing the environmental impact of textile industry by reusing residual salts and water: ECUVal system. Chem. Eng. J. 373, 161–170. https://doi.org/10.1016/j.cej.2019.04.146
Capar, G., Yetis, U., Yilmaz, L., (2006). Membrane based strategies for the pre-treatment of acid dye bath wastewaters. J. Hazard. Mater. 135, 423–430. https://doi.org/10.1016/j.jhazmat.2005.12.008
Chen, Y., Zhang, D., (2014). Adsorption kinetics, isotherm and thermodynamics studies of flavones from Vaccinium Bracteatum Thunb leaves on NKA-2 resin. Chem. Eng. J. 254, 579–585. https://doi.org/10.1016/j.cej.2014.05.120
Cüce, H., Aydın Temel, F., (2021). Reuse of agro-wastes to treat wastewater containing dyestuff: Sorption process with potato and pumpkin seed wastes. Int. J. Glob. Warm. 24, 14–37. https://doi.org/10.1504/ijgw.2021.115108
de Oliveira Neto, G.C., Ferreira Correia, J.M., Silva, P.C., de Oliveira Sanches, A.G., Lucato, W.C., (2019). Cleaner Production in the textile industry and its relationship to sustainable development goals. J. Clean. Prod. 228, 1514–1525. https://doi.org/10.1016/j.jclepro.2019.04.334
Dikici, H., Saltali, K., Bingölbalı, S. (2010). Equilibrium and Kinetics Characteristics of Copper (II) Sorption onto Gyttja. Bull Environ Contam Toxicol 84, 147–151. https://doi.org/10.1007/s00128-009-9899-x
Elver, O., Aydın Temel, F., Cagcag Yolcu, O., Akbal, F., Kuleyin, A., (2023). Modeling of Cu(II) adsorption on the activated Phragmites australis waste by fuzzy-based and neural network-based inference systems. J. Ind. Eng. Chem. https://doi.org/10.1016/j.jiec.2023.08.031
GilPavas, E., Dobrosz-Gómez, I., Gómez-García, M.Á., (2012). Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: The Response Surface Methodology as the optimization tool. Water Sci. Technol. 65, 1795–1800. https://doi.org/10.2166/wst.2012.078
Ihaddaden, S., Aberkane, D., Boukerroui, A., Robert, D., (2022). Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). J. Water Process Eng. 49, 102952. https://doi.org/10.1016/j.jwpe.2022.102952
Khandegar, V., Saroha, A.K., (2013). Electrocoagulation for the treatment of textile industry effluent - A review. J. Environ. Manage. 128, 949–963. https://doi.org/10.1016/j.jenvman.2013.06.043
Kim, T.H., Park, C., Kim, S., (2005). Water recycling from desalination and purification process of reactive dye manufacturing industry by combined membrane filtration. J. Clean. Prod. 13, 779–786. https://doi.org/10.1016/j.jclepro.2004.02.044
Kuleyin, A., Aydın, F., (2011). Removal of Reactive Textile Dyes (Remazol Brillant Blue R and Remazol Yellow) by Surfactant-Modified Natural Zeolite. Environ. Prog. Sustain. Energy, 30, 141–151. https://doi.org/10.1002/ep
Kuleyin, A., Gök, A., Akbal, F., (2021). Treatment of textile industry wastewater by electro-Fenton process using graphite electrodes in batch and continuous mode. J. Environ. Chem. Eng. 9. https://doi.org/10.1016/j.jece.2020.104782
Liu, Y., Tan, Y., Cheng, Z., Liu, S., Ren, Y., Chen, X., Fan, M., Shen, Z., (2022). Quantitative structure-activity relationship (QSAR) guides the development of dye removal by coagulation. J. Hazard. Mater. 438, 129448. https://doi.org/10.1016/j.jhazmat.2022.129448
Mallakpour, S., Sirous, F., Dinari, M., (2023). Comparative study for removal of cationic and anionic dyes using alginate-based hydrogels filled with citric acid-sawdust/UiO-66-NH2 hybrid. Int. J. Biol. Macromol. 238, 124034. https://doi.org/10.1016/j.ijbiomac.2023.124034
Olgun, A., Atar, N., (2012). Equilibrium, thermodynamic and kinetic studies for the adsorption of lead (II) and nickel (II) onto clay mixture containing boron impurity. J. Ind. Eng. Chem. 18, 1751–1757. https://doi.org/10.1016/j.jiec.2012.03.020
Ozdemir, O., Armagan, B., Turan, M., Çelik, M. S. (2004). Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals. Dyes and Pigments, 62(1), 49–60. doi:10.1016/j.dyepig.2003.11.007
Öden, M.K., Şahinkaya, S., Küçükçongar, S. (2017). Pirina kullanılarak adsorpsiyon prosesinde renk giderimi, Cumhuriyet Sci. J., 38-4, 215-219.
Sala, M., Gutiérrez-Bouzán, M.C., (2014). Electrochemical treatment of industrial wastewater and effluent reuse at laboratory and semi-industrial scale. J. Clean. Prod. 65, 458–464. https://doi.org/10.1016/j.jclepro.2013.08.006
Salazar, R., Gallardo-Arriaza, J., Vidal, J., Rivera-Vera, C., Toledo-Neira, C., Sandoval, M.A., Cornejo-Ponce, L., Thiam, A., (2019). Treatment of industrial textile wastewater by the solar photoelectro-Fenton process: Influence of solar radiation and applied current. Sol. Energy, 190, 82–91. https://doi.org/10.1016/j.solener.2019.07.072
Salman, T., Aydın Temel, F., Turan, G., Ardalı, Y., (2014). Removal of lead (II) from aqueous solution by batch adsorption on various inexpensive adsorbents using experimental design. Desalin. Water Treat. 56, 1566–1575. https://doi.org/10.1080/19443994.2014.951073
Salman, T., Aydın Temel, F., Turan, N.G., Ardali, Y., (2016). Adsorption of lead (II) ions onto diatomite from aqueous solutions: Mechanism, isotherm and kinetic studies. Glob. Nest J. 18, 1–10.
Saltalı, K., Alhashemi, M. (2022). Gidya,Leonardit ve Kompost’un Çinko Sorpsiyon Özelliklerinin Belirlenmesi, Turkish Journal of Agriculture-Food Science and Technology, 10, 2751-2757. https://doi.org/10.24925/turjaf.v10isp1.2751-2757.5720
Shen, Y., Han, S., Xu, Q., Wang, Y., Xu, Z., Zhao, B., Zhang, R., (2016). Optimizing degradation of Reactive Yellow 176 by dielectric barrier discharge plasma combined with TiO2 nano-particles prepared using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 60, 302–312.
Soliman, N.K., Moustafa, A.F., Aboud, A.A., Halim, K.S.A., (2019). Effective utilization of Moringa seeds waste as a new green environmental adsorbent for removal of industrial toxic dyes. J. Mater. Res. Technol. 8, 1798–1808. https://doi.org/10.1016/j.jmrt.2018.12.010
Stavrinou, A., Aggelopoulos, C.A., Tsakiroglou, C.D., (2018). Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: Adsorption kinetics and equilibrium isotherms as a tool. J. Environ. Chem. Eng. 6, 6958–6970. https://doi.org/10.1016/j.jece.2018.10.063
Sumanjit, K., Rani, S., Mahajan, R.K., (2016). Equilibrium, kinetics and thermodynamic parameters for adsorptive removal of dye Basic Blue 9 by ground nut shells and Eichhornia. Arab. J. Chem. 9, S1464–S1477. https://doi.org/10.1016/j.arabjc.2012.03.013
Tsai, W. T., Chang, Y. M., Lai, C. W., Lo, C. C., (2005). Adsorption of ethyl violet dye in aqueous solution by regenerated spent bleaching earth. J. Colloid Interface Sci. 289, 333-338.
Vargas, A.M.M., Cazetta, A.L., Kunita, M.H., Silva, T.L., Almeida, V.C., (2011). Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): Study of adsorption isotherms and kinetic models. Chem. Eng. J. 168, 722–730. https://doi.org/10.1016/j.cej.2011.01.067
Yadav, M., Thakore, S., Jadeja, R., (2022). Removal of organic dyes using Fucus vesiculosus seaweed bioadsorbent an ecofriendly approach: Equilibrium, kinetics and thermodynamic studies. Environ. Chem. Ecotoxicol. 4, 67–77. https://doi.org/10.1016/j.enceco.2021.12.003
Zazou, H., Afanga, H., Akhouairi, S., Ouchtak, H., Addi, A.A., Akbour, R.A., Assabbane, A., Douch, J., Elmchaouri, A., Duplay, J., Jada, A., Hamdani, M., (2019). Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process. J. Water Process Eng. 28, 214–221. https://doi.org/10.1016/j.jwpe.2019.02.006
Zazycki, M.A., Godinho, M., Perondi, D., Foletto, E.L., Collazzo, G.C., Dotto, G.L., (2018). New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. J. Clean. Prod. 171, 57–65. https://doi.org/10.1016/j.jclepro.2017.10.007
Aydın Temel, F. (2024). Everzol Yellow 3RS Boyar Maddesinin Gidya Üzerine Adsorpsiyonu: Kinetik ve İzoterm Çalışmaları. Karadeniz Fen Bilimleri Dergisi, 14(1), 194-210. https://doi.org/10.31466/kfbd.1374988