Research Article
BibTex RIS Cite

The Effect of Porosity on the Free Vibrations of Functionally Graded Beams

Year 2024, Volume: 14 Issue: 3, 1275 - 1289, 15.09.2024
https://doi.org/10.31466/kfbd.1451491

Abstract

In this study, the effect of porosity on the free vibrations of functionally graded beams has been thoroughly examined using the ANSYS APDL package program. The influence of the pores formed in the structure during the production of beams made with functionally graded materials (FGM), whose material properties vary according to a function, on the behavior of the beam is a significant topic in the literature. Due to the complexity and length of solving such problems analytically and numerically, using the ANSYS APDL package program will save us time and effort. The variation of the beam's materials within the volume has been defined by a power-law. Depending on parameters such as various boundary conditions, power-law index, slenderness, porosity coefficient, and porosity distributions (FDM-1, FDM-2), dimensionless natural frequencies of porous FGM beams were obtained and compared with the literature.

Project Number

1919B012217533

References

  • Akbaş Ş.D. (2018). Forced vibration analysis of functionally graded porous deep beams. Compos Struct., 186, 293–302. https://doi.org/10.1016/j.compstruct.2017.12.013
  • Al Rjoub Y.S, and Hamad A.G. (2017). Free vibration of functionally Euler-Bernoulli and Timoshenko graded porous beams using the transfer matrix method. KSCE J Civ Eng., 21, 792–806. https://doi.org/10.1007/s12205-016-0149-6.
  • Al-Itbi, S.K.A., and Noori, A.R. (2022). Influence of porosity on the free vibration response of sandwich functionally graded porous beams. Journal of Sustainable Construction Materials and Technologies, 7(4), 291-301. doi:10.47481/jscmt.1165940
  • Al-Itbi, S.K.A., and Noori, A.R. (2023). Finite element analysis for the static response of functionally graded porous sandwich beams. International Journal of Engineering Technologies-IJET, 8(1), 13-20. doi:10.19072/ijet.1161612
  • Alnujaie A, Akbas S.D, Eltaher M.A, and Assie A.E. (2021). Damped forced vibration analysis of layered functionally graded thick beams with porosity. Smart Structures and Systems, 27(4), 679–689. https://doi.org/10.12989/sss.2021.27.4.669
  • ANSYS. Swanson Analysis Systems Inc., Houston, PA, USA, 2023.
  • Chen D, Yang J, and Kitipornchai S. (2015). Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos Struct., 133, 54–61. https://doi.org/10.1016/j.compstruct.2015.07.052.
  • Chopan, A. ve Noori, A.R. (2023). Fonksiyonel derecelendirilmiş gözenekli sandviç kirişlerin zorlanmış titreşim analizi. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 26(4), 909-921.
  • Civalek, Ö., Uzun, B., and Yaylı, M.Ö. (2024). On the stability analysis of a restrained FG nanobeam in an elastic matrix with neutral axis effects. Zeitschrift für Naturforschung A, Published online. https://doi.org/10.1515/zna-2023-0361
  • Ebrahimi F, Ghasemi F, and Salari E. (2016). Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica, 51, 223–49. https://doi.org/10.1007/s11012-015-0208-y.
  • Fouda N, El-midany T, and Sadoun A.M. (2017). Bending, buckling and vibration of a functionally graded porous beam using finite elements. Journal of Applied and Computational Mechanics, 3(4), 274–282. https://doi.org/10.22055/jacm.2017.21924.1121
  • Gao K, Li R, and Yang J. (2019). Dynamic characteristics of functionally graded porous beams with interval material properties. Eng Struct., 197, 109441. https://doi.org/10.1016/j.engstruct.2019.109441.
  • Hadji L, Zouatnia N, and Bernard F. (2019). An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models. Struct Eng Mech., 69, 231–41. https://doi.org/10.12989/sem.2019.69.2.231.
  • Hamed M.A, Sadoun A.M, and Eltaher M.A. (2019). Effects of porosity models on static behavior of size dependent functionally graded beam. Structural Engineering and Mechanics, 71(1);89–98. https://doi.org/10.12989/sem.2019.71.1.089
  • Jena S.K, Chakraverty S, and Malikan M. (2021). Application of shifted Chebyshev polynomial-based Rayleigh–Ritz method and Navier’s technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation. Eng Comput., 37, 3569–89. https://doi.org/10.1007/s00366-020-01018-7.
  • Kitipornchai S, Chen D, and Yang J. (2017). Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater Des., 116, 656–65. https://doi.org/10.1016/j.matdes.2016.12.061.
  • Nguyen N.D, Nguyen T.N, Nguyen T.K, and Vo T.P. (2022). A new two-variable shear deformation theory for bending, free vibration and buckling analysis of functionally graded porous beams. Compos Struct., 282. https://doi.org/10.1016/j.compstruct.2021.115095
  • Noori, A.R., Aslan, T.A., and Temel, B. (2021). Dynamic analysis of functionally graded porous beams using complementary functions method in the Laplace domain. Composite Structures, 256, 113094. doi:10.1016/j.compstruct.2020.113094
  • Şimşek, M. (2010). Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design, 240(4), 697–705. https://doi.org/10.1016/j.nucengdes.2009.12.013
  • Taşkın V, ve Demirhan P.A. (2020). Fonksiyonel derecelendirilmiş gözenekli kirişlerin serbest titreşim analizi. Eskişehir Tek Üniversitesi Bilim ve Teknol Derg B - Teor Bilim, 8, 49–61. https://doi.org/10.20290/estubtdb.538586.
  • Turan M, and Kahya V. (2021). Free vibration and buckling analysis of functionally graded sandwich beams by Navier’s method. J Fac Eng Archit Gazi Univ., 36, 743–57. https://doi.org/10.17341/gazimmfd.599928
  • Turan, M. (2022). Fonksiyonel derecelendirilmiş gözenekli kirişlerin sonlu elemanlar yöntemiyle statik analizi, Mühendislik Bilimleri ve Tasarım Dergisi, 10 (4), 1362-1374. https://doi.org/10.21923/jesd.1134356
  • Turan, M. ve Hacıoğlu, M.I. (2023). Yüksek mertebe sonlu eleman modeliyle fonksiyonel derecelendirilmiş kirişlerin serbest titreşim ve statik analizi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(2), 414-431. doi: 10.17714/gumusfenbil.1185301
  • Turan, M. ve Kahya, V. (2018). Fonksiyonel derecelendirilmiş kirişlerin serbest titreşim analizi. Karadeniz Fen Bilimleri Dergisi, 8 (2), 119-130. https://doi.org/10.31466/kfbd.453833
  • Turan, M., (2018). Tabakalı kirişlerin statik, serbest titreşim ve burkulma analizleri için bir sonlu eleman modeli. Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.
  • Turan, M., and Adıyaman, G. (2023). A New Higher-Order Finite Element for Static Analysis of Two-Directional Functionally Graded Porous Beams. Arabian Journal for Science and Engineering, 48, 13303-13321. https://doi.org/10.1007/s13369-023-07742-8
  • Turan, M., and Adıyaman, G. (2024). Free vibration and buckling analysis of porous two-directional functionally graded beams using a higher-order finite element model. Journal of Vibration Engineering & Technologies, 12, 1133-1152. https://doi.org/10.1007/s42417-023-00898-5
  • Turan, M., Yaylacı E.U., and Yaylacı M. (2023). Free vibration and buckling of functionally graded porous beams using analytical, finite element, and artificial neural network methods. Archive of Applied Mechanics, 93, 1351-1372. https://doi.org/10.1007/s00419-022-02332-w
  • Uzun, B., and Yaylı, M.Ö. (2024a). Porosity effects on the dynamic response of arbitrary restrained FG nanobeam based on the MCST. Zeitschrift für Naturforschung A, 79(2), 183-197. https://doi.org/10.1515/zna-2023-0261
  • Uzun, B., and Yaylı, M.Ö. (2024b). Rotary inertia effect on dynamic analysis of embedded FG porous nanobeams under deformable boundary conditions with the effect of neutral axis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46, 111. https://doi.org/10.1007/s40430-023-04605-z
  • Uzun, B., Kafkas, U., Deliktaş, B., and Yaylı, M.Ö. (2023). Size-dependent vibration of porous bishop nanorod with arbitrary boundary conditions and nonlocal elasticity effects. Journal of Vibration Engineering & Technologies, 11(3), 809-826. doi:10.1007/s42417-022-00610-z
  • Vo, T. P., Thai, H. T., Nguyen, T. K., Inam, F., and Lee, J. (2015). A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Composite Structures, 119, 1–12. https://doi.org/10.1016/j.compstruct.2014.08.006
  • Wattanasakulpong N, and Chaikittiratana A. (2015). Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica, 50, 1331–42. https://doi.org/10.1007/s11012-014-0094-8.

Gözenekliliğin Fonksiyonel Derecelendirilmiş Kirişlerin Serbest Titreşimleri Üzerinde Etkisi

Year 2024, Volume: 14 Issue: 3, 1275 - 1289, 15.09.2024
https://doi.org/10.31466/kfbd.1451491

Abstract

Bu çalışmada, gözenekliliğin fonksiyonel derecelendirilmiş kirişlerin serbest titreşimleri üzerindeki etkisi, ANSYS APDL paket programı kullanılarak detaylı bir şekilde incelenmiştir. Malzeme özellikleri bir fonksiyona bağlı olarak değişen fonksiyonel derecelendirilmiş malzemelerle (FDM) yapılan kirişlerin üretimi sırasında yapısında oluşan gözeneklerin kirişin davranışına etkisi literatürde önemli bir konudur. Bu tip problemlerin analitik ve sayısal olarak çözümü uzun ve zahmetli olduğu için ANSYS APDL paket programının kullanılması zamandan ve harcanan emekten tasarruf etmemizi sağlayacaktır. Bir kuvvet kuralıyla kirişin malzemelerinin hacimdeki değişimi tanımlanmıştır. Çeşitli sınır koşulları, kuvvet kuralı indeksi, narinlik, gözeneklilik katsayısı ve gözeneklilik dağılımları (FDM-1, FDM-2) gibi parametrelere bağlı olarak gözenekli FDM kirişlerin boyutsuz doğal frekansları elde edilmiş ve literatürle kıyaslanmıştır.

Project Number

1919B012217533

References

  • Akbaş Ş.D. (2018). Forced vibration analysis of functionally graded porous deep beams. Compos Struct., 186, 293–302. https://doi.org/10.1016/j.compstruct.2017.12.013
  • Al Rjoub Y.S, and Hamad A.G. (2017). Free vibration of functionally Euler-Bernoulli and Timoshenko graded porous beams using the transfer matrix method. KSCE J Civ Eng., 21, 792–806. https://doi.org/10.1007/s12205-016-0149-6.
  • Al-Itbi, S.K.A., and Noori, A.R. (2022). Influence of porosity on the free vibration response of sandwich functionally graded porous beams. Journal of Sustainable Construction Materials and Technologies, 7(4), 291-301. doi:10.47481/jscmt.1165940
  • Al-Itbi, S.K.A., and Noori, A.R. (2023). Finite element analysis for the static response of functionally graded porous sandwich beams. International Journal of Engineering Technologies-IJET, 8(1), 13-20. doi:10.19072/ijet.1161612
  • Alnujaie A, Akbas S.D, Eltaher M.A, and Assie A.E. (2021). Damped forced vibration analysis of layered functionally graded thick beams with porosity. Smart Structures and Systems, 27(4), 679–689. https://doi.org/10.12989/sss.2021.27.4.669
  • ANSYS. Swanson Analysis Systems Inc., Houston, PA, USA, 2023.
  • Chen D, Yang J, and Kitipornchai S. (2015). Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos Struct., 133, 54–61. https://doi.org/10.1016/j.compstruct.2015.07.052.
  • Chopan, A. ve Noori, A.R. (2023). Fonksiyonel derecelendirilmiş gözenekli sandviç kirişlerin zorlanmış titreşim analizi. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 26(4), 909-921.
  • Civalek, Ö., Uzun, B., and Yaylı, M.Ö. (2024). On the stability analysis of a restrained FG nanobeam in an elastic matrix with neutral axis effects. Zeitschrift für Naturforschung A, Published online. https://doi.org/10.1515/zna-2023-0361
  • Ebrahimi F, Ghasemi F, and Salari E. (2016). Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica, 51, 223–49. https://doi.org/10.1007/s11012-015-0208-y.
  • Fouda N, El-midany T, and Sadoun A.M. (2017). Bending, buckling and vibration of a functionally graded porous beam using finite elements. Journal of Applied and Computational Mechanics, 3(4), 274–282. https://doi.org/10.22055/jacm.2017.21924.1121
  • Gao K, Li R, and Yang J. (2019). Dynamic characteristics of functionally graded porous beams with interval material properties. Eng Struct., 197, 109441. https://doi.org/10.1016/j.engstruct.2019.109441.
  • Hadji L, Zouatnia N, and Bernard F. (2019). An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models. Struct Eng Mech., 69, 231–41. https://doi.org/10.12989/sem.2019.69.2.231.
  • Hamed M.A, Sadoun A.M, and Eltaher M.A. (2019). Effects of porosity models on static behavior of size dependent functionally graded beam. Structural Engineering and Mechanics, 71(1);89–98. https://doi.org/10.12989/sem.2019.71.1.089
  • Jena S.K, Chakraverty S, and Malikan M. (2021). Application of shifted Chebyshev polynomial-based Rayleigh–Ritz method and Navier’s technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation. Eng Comput., 37, 3569–89. https://doi.org/10.1007/s00366-020-01018-7.
  • Kitipornchai S, Chen D, and Yang J. (2017). Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater Des., 116, 656–65. https://doi.org/10.1016/j.matdes.2016.12.061.
  • Nguyen N.D, Nguyen T.N, Nguyen T.K, and Vo T.P. (2022). A new two-variable shear deformation theory for bending, free vibration and buckling analysis of functionally graded porous beams. Compos Struct., 282. https://doi.org/10.1016/j.compstruct.2021.115095
  • Noori, A.R., Aslan, T.A., and Temel, B. (2021). Dynamic analysis of functionally graded porous beams using complementary functions method in the Laplace domain. Composite Structures, 256, 113094. doi:10.1016/j.compstruct.2020.113094
  • Şimşek, M. (2010). Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design, 240(4), 697–705. https://doi.org/10.1016/j.nucengdes.2009.12.013
  • Taşkın V, ve Demirhan P.A. (2020). Fonksiyonel derecelendirilmiş gözenekli kirişlerin serbest titreşim analizi. Eskişehir Tek Üniversitesi Bilim ve Teknol Derg B - Teor Bilim, 8, 49–61. https://doi.org/10.20290/estubtdb.538586.
  • Turan M, and Kahya V. (2021). Free vibration and buckling analysis of functionally graded sandwich beams by Navier’s method. J Fac Eng Archit Gazi Univ., 36, 743–57. https://doi.org/10.17341/gazimmfd.599928
  • Turan, M. (2022). Fonksiyonel derecelendirilmiş gözenekli kirişlerin sonlu elemanlar yöntemiyle statik analizi, Mühendislik Bilimleri ve Tasarım Dergisi, 10 (4), 1362-1374. https://doi.org/10.21923/jesd.1134356
  • Turan, M. ve Hacıoğlu, M.I. (2023). Yüksek mertebe sonlu eleman modeliyle fonksiyonel derecelendirilmiş kirişlerin serbest titreşim ve statik analizi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(2), 414-431. doi: 10.17714/gumusfenbil.1185301
  • Turan, M. ve Kahya, V. (2018). Fonksiyonel derecelendirilmiş kirişlerin serbest titreşim analizi. Karadeniz Fen Bilimleri Dergisi, 8 (2), 119-130. https://doi.org/10.31466/kfbd.453833
  • Turan, M., (2018). Tabakalı kirişlerin statik, serbest titreşim ve burkulma analizleri için bir sonlu eleman modeli. Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.
  • Turan, M., and Adıyaman, G. (2023). A New Higher-Order Finite Element for Static Analysis of Two-Directional Functionally Graded Porous Beams. Arabian Journal for Science and Engineering, 48, 13303-13321. https://doi.org/10.1007/s13369-023-07742-8
  • Turan, M., and Adıyaman, G. (2024). Free vibration and buckling analysis of porous two-directional functionally graded beams using a higher-order finite element model. Journal of Vibration Engineering & Technologies, 12, 1133-1152. https://doi.org/10.1007/s42417-023-00898-5
  • Turan, M., Yaylacı E.U., and Yaylacı M. (2023). Free vibration and buckling of functionally graded porous beams using analytical, finite element, and artificial neural network methods. Archive of Applied Mechanics, 93, 1351-1372. https://doi.org/10.1007/s00419-022-02332-w
  • Uzun, B., and Yaylı, M.Ö. (2024a). Porosity effects on the dynamic response of arbitrary restrained FG nanobeam based on the MCST. Zeitschrift für Naturforschung A, 79(2), 183-197. https://doi.org/10.1515/zna-2023-0261
  • Uzun, B., and Yaylı, M.Ö. (2024b). Rotary inertia effect on dynamic analysis of embedded FG porous nanobeams under deformable boundary conditions with the effect of neutral axis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46, 111. https://doi.org/10.1007/s40430-023-04605-z
  • Uzun, B., Kafkas, U., Deliktaş, B., and Yaylı, M.Ö. (2023). Size-dependent vibration of porous bishop nanorod with arbitrary boundary conditions and nonlocal elasticity effects. Journal of Vibration Engineering & Technologies, 11(3), 809-826. doi:10.1007/s42417-022-00610-z
  • Vo, T. P., Thai, H. T., Nguyen, T. K., Inam, F., and Lee, J. (2015). A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Composite Structures, 119, 1–12. https://doi.org/10.1016/j.compstruct.2014.08.006
  • Wattanasakulpong N, and Chaikittiratana A. (2015). Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica, 50, 1331–42. https://doi.org/10.1007/s11012-014-0094-8.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Muhittin Turan 0000-0002-5703-0580

Mahmut İlter Hacıoğlu 0000-0002-6666-7380

Erkan Balci 0009-0006-3871-8036

Project Number 1919B012217533
Publication Date September 15, 2024
Submission Date March 12, 2024
Acceptance Date July 25, 2024
Published in Issue Year 2024 Volume: 14 Issue: 3

Cite

APA Turan, M., Hacıoğlu, M. İ., & Balci, E. (2024). Gözenekliliğin Fonksiyonel Derecelendirilmiş Kirişlerin Serbest Titreşimleri Üzerinde Etkisi. Karadeniz Fen Bilimleri Dergisi, 14(3), 1275-1289. https://doi.org/10.31466/kfbd.1451491