Zorlanmış Hava Soğutma Esaslı Lityum Bazlı Silindirik bir Batarya Hücresinin Isı Dağılım Performansının Nümerik İncelenmesi
Year 2024,
Volume: 14 Issue: 3, 1586 - 1603, 15.09.2024
Seyda Özbektaş
,
Bilal Sungur
,
Ali Rıza Kaleli
Abstract
Batarya modülünden çekilen güç miktarının artmasıyla batarya hücrelerinin ve dolayısıyla batarya modülünün sıcaklıkları da artmaktadır. Bu durum batarya hücresinde kapasite ve performans kaybına sebep olmaktadır. Bu amaçla, bu çalışmada giriş kısmına fan yerleştirilen bir kanal içerisinde konumlandırılmış silindirik bir LiFeS2 batarya hücresinin 1000 rpm, 2000 rpm ve 3000 rpm olmak üzere üç farklı fan devrinde ve 0.2C, 0.4C, 0.6C ve 0.8C olmak üzere dört farklı deşarj oranında sergilediği termal ve elektriksel performans nümerik olarak incelenmiştir. Nümerik modelleme için ANSYS Fluent paket programı içerisinde yer alan İkili Potansiyel Çok Ölçekli Çok Alanlı (MSMD) batarya modülü kullanılmıştır. Lityum bataryanın termal ve elektriksel karakteristiğinin modellenmesinde Eşdeğer Devre Modeli (ECM) kullanılmıştır. Sonuçlar deşarj oranları açısından değerlendirildiğinde, artan deşarj oranlarıyla batarya sıcaklıklarının da arttığı ve verebildikleri gerilim değerlerinin azaldığı görülmüştür. Ayrıca, deşarj oranın artmasıyla batarya hücresinin stabil olarak sağladığı gerilim süresi de azalmıştır. Bu bağlamda 0.2C deşarj oranında gerilim değeri 1.42 V seviyelerinde stabil bir seyir izlerken, 0.8C’de 0.8V ve 1V arasında değişkenlik göstermiştir. Fan devrinin etkisi incelendiğinde, 0.8C deşarj oranında hesaplama süresi sonunda batarya hücresi üzerinde meydana gelen ortalama sıcaklıklar 1000 rpm durumuna göre karşılaştırıldığında fan devrinin iki katına çıkmasıyla %20.35, üç katına çıkmasıyla %28.56 oranında azalmıştır.
Ethical Statement
Yapılan çalışmada araştırma ve yayın etiğine uyulmuştur.
Supporting Institution
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)
Thanks
Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK, proje no 123M582) tarafından desteklenmiştir.
References
- Alsabari, A., Hassan, M. K., che soh, A., & Zafira, R. (2021). Modeling and validation of lithium-ion battery with initial state of charge estimation. Indonesian Journal of Electrical Engineering and Computer Science, 21, 1317. doi:10.11591/ijeecs.v21.i3.pp1317-1331
- Alsharif, K. I., Pesch, A., Borra, V., Cortes, P., MacDonald, E., Li, F. X., & Choo, K. (2022). Transient Thermal and Electrical Characteristics of a Cylindrical LiFeS2 Cell with Equivalent Circuit Model. ArXiv, abs/2311.02095.
- ANSYS Fluent Battery Module Manual (2015). ANSYS®, Inc. Canonsburg, PA: SAS IP Inc.
- Bilgen, S. (2014). Structure and environmental impact of global energy consumption. Renewable & Sustainable Energy Reviews, 38, 890-902. doi:10.1016/j.rser.2014.07.004
- Chaoui, H., & Gualous, H. (2017). Online parameter and state estimation of lithium-ion batteries under temperature effects. Electric Power Systems Research, 145, 73-82. doi:https://doi.org/10.1016/j.epsr.2016.12.029
- Chen, S. C., Wan, C. C., & Wang, Y. Y. (2005). Thermal analysis of lithium-ion batteries. Journal of Power Sources, 140(1), 111-124. doi:10.1016/j.jpowsour.2004.05.064
- Deng, D. (2015). Li-ion batteries: basics, progress, and challenges. Energy Science & Engineering, 3(5), 385-418. doi:10.1002/ese3.95
- Gao, Z., Chin, C. S., Woo, W. L., & Jia, J. (2017). Integrated Equivalent Circuit and Thermal Model for Simulation of Temperature-Dependent LiFePO4 Battery in Actual Embedded Application. Energies, 10(1). doi:10.3390/en10010085
- Greco, A., Jiang, X., & Cao, D. P. (2015). An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite. Journal of Power Sources, 278, 50-68. doi:10.1016/j.jpowsour.2014.12.027
- Guo, G. F., Long, B., Cheng, B., Zhou, S. Q., Xu, P., & Cao, B. G. (2010). Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application. Journal of Power Sources, 195(8), 2393-2398. doi:10.1016/j.jpowsour.2009.10.090
- Hatchard, T. D., MacNeil, D. D., Basu, A., & Dahn, J. R. (2001). Thermal model of cylindrical and prismatic lithium-ion cells. Journal of the Electrochemical Society, 148(7), A755-A761. doi:10.1149/1.1377592
- Jiang, G. W., Huang, J. H., Liu, M. C., & Cao, M. (2017). Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material. Applied Thermal Engineering, 120, 1-9. doi:10.1016/j.applthermaleng.2017.03.107
- KÖK, C., & Alkaya, A. (2020). Investigation of Thermal Behavior of Lithium-Ion Batteries under Different Loads. European Mechanical Science, 4(3), 96-102. doi:10.26701/ems.635707
- Li, W., Garg, A., Wang, N., Gao, L., Le Phung, M. L., & Tran, V. M. (2022). Computational Fluid Dynamics-Based Numerical Analysis for Studying the Effect of Mini-Channel Cooling Plate, Flow Characteristics, and Battery Arrangement for Cylindrical Lithium-Ion Battery Pack. Journal of Electrochemical Energy Conversion and Storage, 19(4). doi:10.1115/1.4054648
- Li, X. X., Zhong, Z. D., Luo, J. H., Wang, Z. Y., Yuan, W. Z., Zhang, G. Q., . . . Yang, C. X. (2019). Experimental Investigation on a Thermoelectric Cooler for Thermal Management of a Lithium-Ion Battery Module. International Journal of Photoenergy, 2019. doi:10.1155/2019/3725364
- Liu, L., Wang, L. Y., Chen, Z., Wang, C., Lin, F., & Wang, H. (2013). Integrated System Identification and State-of-Charge Estimation of Battery Systems. IEEE Transactions on Energy Conversion, 28(1), 12-23. doi:10.1109/TEC.2012.2223700
- Lyu, Y., Siddique, A. M., Gadsden, S. A., & Mahmud, S. (2021). Experimental investigation of thermoelectric cooling for a new battery pack design in a copper holder. Results in Engineering, 10. doi:10.1016/j.rineng.2021.100214
- Madani, S. S., Schaltz, E., & Knudsen Kær, S. (2019). An Electrical Equivalent Circuit Model of a Lithium Titanate Oxide Battery. Batteries, 5(1). doi:10.3390/batteries5010031
- Ozbektas, S., Sungur, B., & Topaloglu, B. (2023). Numerical Investigation of the Effect of Heat Sinks With Various Fin Geometries on the Performance of a Thermoelectric Generator. Journal of Thermal Science and Engineering Applications, 15(3). doi:10.1115/1.4056245
- Plett, G. L. (2015). Battery Management Systems (Vol. 1). Norwood, Massachusetts: Artech House.
- Rao, Z. H., Qian, Z., Kuang, Y., & Li, Y. M. (2017). Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Applied Thermal Engineering, 123, 1514-1522. doi:10.1016/j.applthermaleng.2017.06.059
- Shahid, S., & Agelin-Chaab, M. (2017). Analysis of Cooling Effectiveness and Temperature Uniformity in a Battery Pack for Cylindrical Batteries. Energies, 10(8). doi:10.3390/en10081157
- Tran, M. K., Mathew, M., Janhunen, S., Panchal, S., Raahemifar, K., Fraser, R., & Fowler, M. (2021). A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters. Journal of Energy Storage, 43. doi:10.1016/j.est.2021.103252
- Yao, L. W., Aziz, J. A., Kong, P. Y., & Idris, N. R. N. (2013, 10-13 Nov. 2013). Modeling of lithium-ion battery using MATLAB/simulink. Paper presented at the IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society.
Numerical Modelling of a Heat Dissipation Performance of a Lithium-Based Cylindrical Battery Based on Forced Air Cooling
Year 2024,
Volume: 14 Issue: 3, 1586 - 1603, 15.09.2024
Seyda Özbektaş
,
Bilal Sungur
,
Ali Rıza Kaleli
Abstract
As the amount of power drawn from the battery module increases, the temperatures of the battery cells and therefore the battery module also increase. This causes loss of capacity and performance in the battery cell. For this purpose, in this study, the thermal and electrical performance of a cylindrical LiFeS2 battery cell located in a duct with a fan at the entrance is numerically investigated at three different fan revolutions 1000 rpm, 2000 rpm and 3000 rpm and four different discharge rates 0.2C, 0.4C, 0.6C and 0.8C. The Dual Potential Multi-Scale Multi-Domain (MSMD) battery module in the ANSYS Fluent package was used for numerical modelling. Equivalent Circuit Model (ECM) was used to model the thermal and electrical characteristics of the lithium battery. When the results were evaluated in terms of discharge rates, it was observed that battery temperatures increased and voltage values decreased with increasing discharge rates. In addition, the duration of the stable voltage provided by the battery cell decreased with increasing discharge rate. In this context, while the voltage value at 0.2C discharge rate was stable at 1.42 V, it varied between 0.8V and 1V at 0.8C. When the effect of fan revolution was examined, the average temperatures on the battery cell at the end of the calculation duration at 0.8C discharge rate decreased by 20.35% with doubling the fan revolution and 28.56% with tripling the fan revolution compared to 1000 rpm.
References
- Alsabari, A., Hassan, M. K., che soh, A., & Zafira, R. (2021). Modeling and validation of lithium-ion battery with initial state of charge estimation. Indonesian Journal of Electrical Engineering and Computer Science, 21, 1317. doi:10.11591/ijeecs.v21.i3.pp1317-1331
- Alsharif, K. I., Pesch, A., Borra, V., Cortes, P., MacDonald, E., Li, F. X., & Choo, K. (2022). Transient Thermal and Electrical Characteristics of a Cylindrical LiFeS2 Cell with Equivalent Circuit Model. ArXiv, abs/2311.02095.
- ANSYS Fluent Battery Module Manual (2015). ANSYS®, Inc. Canonsburg, PA: SAS IP Inc.
- Bilgen, S. (2014). Structure and environmental impact of global energy consumption. Renewable & Sustainable Energy Reviews, 38, 890-902. doi:10.1016/j.rser.2014.07.004
- Chaoui, H., & Gualous, H. (2017). Online parameter and state estimation of lithium-ion batteries under temperature effects. Electric Power Systems Research, 145, 73-82. doi:https://doi.org/10.1016/j.epsr.2016.12.029
- Chen, S. C., Wan, C. C., & Wang, Y. Y. (2005). Thermal analysis of lithium-ion batteries. Journal of Power Sources, 140(1), 111-124. doi:10.1016/j.jpowsour.2004.05.064
- Deng, D. (2015). Li-ion batteries: basics, progress, and challenges. Energy Science & Engineering, 3(5), 385-418. doi:10.1002/ese3.95
- Gao, Z., Chin, C. S., Woo, W. L., & Jia, J. (2017). Integrated Equivalent Circuit and Thermal Model for Simulation of Temperature-Dependent LiFePO4 Battery in Actual Embedded Application. Energies, 10(1). doi:10.3390/en10010085
- Greco, A., Jiang, X., & Cao, D. P. (2015). An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite. Journal of Power Sources, 278, 50-68. doi:10.1016/j.jpowsour.2014.12.027
- Guo, G. F., Long, B., Cheng, B., Zhou, S. Q., Xu, P., & Cao, B. G. (2010). Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application. Journal of Power Sources, 195(8), 2393-2398. doi:10.1016/j.jpowsour.2009.10.090
- Hatchard, T. D., MacNeil, D. D., Basu, A., & Dahn, J. R. (2001). Thermal model of cylindrical and prismatic lithium-ion cells. Journal of the Electrochemical Society, 148(7), A755-A761. doi:10.1149/1.1377592
- Jiang, G. W., Huang, J. H., Liu, M. C., & Cao, M. (2017). Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material. Applied Thermal Engineering, 120, 1-9. doi:10.1016/j.applthermaleng.2017.03.107
- KÖK, C., & Alkaya, A. (2020). Investigation of Thermal Behavior of Lithium-Ion Batteries under Different Loads. European Mechanical Science, 4(3), 96-102. doi:10.26701/ems.635707
- Li, W., Garg, A., Wang, N., Gao, L., Le Phung, M. L., & Tran, V. M. (2022). Computational Fluid Dynamics-Based Numerical Analysis for Studying the Effect of Mini-Channel Cooling Plate, Flow Characteristics, and Battery Arrangement for Cylindrical Lithium-Ion Battery Pack. Journal of Electrochemical Energy Conversion and Storage, 19(4). doi:10.1115/1.4054648
- Li, X. X., Zhong, Z. D., Luo, J. H., Wang, Z. Y., Yuan, W. Z., Zhang, G. Q., . . . Yang, C. X. (2019). Experimental Investigation on a Thermoelectric Cooler for Thermal Management of a Lithium-Ion Battery Module. International Journal of Photoenergy, 2019. doi:10.1155/2019/3725364
- Liu, L., Wang, L. Y., Chen, Z., Wang, C., Lin, F., & Wang, H. (2013). Integrated System Identification and State-of-Charge Estimation of Battery Systems. IEEE Transactions on Energy Conversion, 28(1), 12-23. doi:10.1109/TEC.2012.2223700
- Lyu, Y., Siddique, A. M., Gadsden, S. A., & Mahmud, S. (2021). Experimental investigation of thermoelectric cooling for a new battery pack design in a copper holder. Results in Engineering, 10. doi:10.1016/j.rineng.2021.100214
- Madani, S. S., Schaltz, E., & Knudsen Kær, S. (2019). An Electrical Equivalent Circuit Model of a Lithium Titanate Oxide Battery. Batteries, 5(1). doi:10.3390/batteries5010031
- Ozbektas, S., Sungur, B., & Topaloglu, B. (2023). Numerical Investigation of the Effect of Heat Sinks With Various Fin Geometries on the Performance of a Thermoelectric Generator. Journal of Thermal Science and Engineering Applications, 15(3). doi:10.1115/1.4056245
- Plett, G. L. (2015). Battery Management Systems (Vol. 1). Norwood, Massachusetts: Artech House.
- Rao, Z. H., Qian, Z., Kuang, Y., & Li, Y. M. (2017). Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Applied Thermal Engineering, 123, 1514-1522. doi:10.1016/j.applthermaleng.2017.06.059
- Shahid, S., & Agelin-Chaab, M. (2017). Analysis of Cooling Effectiveness and Temperature Uniformity in a Battery Pack for Cylindrical Batteries. Energies, 10(8). doi:10.3390/en10081157
- Tran, M. K., Mathew, M., Janhunen, S., Panchal, S., Raahemifar, K., Fraser, R., & Fowler, M. (2021). A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters. Journal of Energy Storage, 43. doi:10.1016/j.est.2021.103252
- Yao, L. W., Aziz, J. A., Kong, P. Y., & Idris, N. R. N. (2013, 10-13 Nov. 2013). Modeling of lithium-ion battery using MATLAB/simulink. Paper presented at the IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society.