Research Article
BibTex RIS Cite

Determination of Heavy Metal Transfer from Soil to Beta vulgaris L. (Sugar Beet) and Evaluation of Human Health Risks

Year 2024, Volume: 14 Issue: 4, 2103 - 2114, 15.12.2024
https://doi.org/10.31466/kfbd.1522895

Abstract

Heavy metals pass from the soil to plants and negatively affect the development of plants such as sugar beet.In our study aimed to investigate the accumulation of heavy metals on sugar beet plants grown in Kayseri. Six different locations were selected: Kesik, Dağılgan, Hacılımezarlığı, Kıraç Tepe, Hacıbektaş and the control area (Kilcan). Leaf, beet, root and soil samples were taken from Beta vulgaris plant. Heavy metal contents were analyzed using ICP-MS device. In terms of sugar beet consumption in Kayseri province, determining heavy metal accumulation and health risks will be very important in terms of these metals. Heavy metal concentration levels in sugar beet samples collected from the region are as follows; copper (Cu) > nickel (Ni) > chromium (Cr) > arsenic (As) > lead (Pb) > cadmium (Cd). When As, Cd and Cr elements are compared with the limit values determined by WHO/FAO, it is seen that they are within the permissible limits.Cu (3.25 μg g−1), Ni (2.49 μg g−1) and Pb (0.26 μg g−1) indicate the potential for negative contributions to health through sugar beet consumption. The study reveals health concerns in terms of heavy metal contents of Cu, Ni and Pb elements evaluated in sugar beet samples grown in Yeşilhisar, Kayseri province.

Project Number

TEZ22F11

References

  • Ahmed, S., Fatema-Tuj-Zohra Mahdi, M. M., Nurnabi, M., Alam, M. Z. and Choudhury, T. R. (2022). Health risk assessment for heavy metal accumulation in leafy vegetables grown on tannery effluent contaminated soil. Toxicology Reports, 9. https://doi.org/10.1016/j.toxrep.2022.03.009
  • Alfaro, M. R., Ugarte, O. M., Lima, L. H. V., Silva, J. R., da Silva, F. B.V., da Silva Lins, S. A. and do Nascimento, C.W. (2022). Risk assessment of heavy metals in soils and edible parts of vegetables grown on sites contaminated by an abandoned steel plant in Havana. Environmental Geochemistry and Health, 44(1). https://doi.org/10.1007/s10653-021-01092-w
  • Antoniadis, V., Golia, E. E., Liu, Y. T., Wang, S. L., Shaheen, S. M and Rinklebe, J. (2019). Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environment International, 124, 79–88. https://doi.org/10.1016/j.envint.2018.12.053
  • Butt, A., Qurat-ul-Ain, Rehman, K., Khan, M. X. and Hesselberg, T. (2018). Bioaccumulation of cadmium, lead, and zinc in agriculture-based insect food chains. Environmental Monitoring and Assessment 190:1–12. https://doi.org/10.1007/S10661-018-7051-2/FIGURES/2
  • Chen, F., Muhammad, F. G., Khan, Z. I., Ahmad, K., Malik, I. S., Ashfaq, A., Naeem, M., Nadeem, M., Ma, J., Awan, M. U. F., Mahpara. S. and Mehmood, S. (2022). Bioaccumulation and transfer of zinc in soil plant and animal system: a health risk assessment for the grazing animals. Environmental Science and Pollution Research, 29(2). https://doi.org/10.1007/s11356-021-15808-z
  • Ekinci, Y. E., Kulan, E. G. and Kaya, M. D. (2022). Ülkemizde şeker pancarı tohumluk üretimi. Turkish Journal of Agriculture - Food Science and Technology, 10(3), 489–495. https://doi.org/10.24925/turjaf.v10i3.489-495.4820
  • FAO. (1998) Food and Agriculture Organization of the United Nations. Soil map of the World, Revised Legend - WSRR #60.
  • FAO/WHO. (2011) Joint FAO/WHO Food Standards Programme Codex Committee on contaminants in foods. Food CF/5INF/1:1–89.
  • Gao, Y., Duan, Z., Zhang, L., Sun, D. and Li, X. (2022). The status and research progress of cadmium pollution in rice- (Oryza sativa L.) and wheat- (Triticum aestivum L.) cropping systems in China: A Critical Review. In Toxics 10 (12). https://doi.org/10.3390/toxics10120794
  • Garg, A., Garg, A., Tai, K. and Sreedeep, S. (2014). An integrated SRM-multi-gene genetic programming approach for prediction of factor of safety of 3-D soil nailed slopes. Engineering Applications of Artificial Intelligence, 30, 30–40. https://doi.org/10.1016/J.ENGAPPAI.2013.12.011
  • Giri, A., Bharti, V. K., Kalia, S., Acharya, S., Kumar, B. and Chaurasia, O. P. (2022). Health risk assessment of heavy metals due to wheat, cabbage, and spinach consumption at cold-arid high altitude region. Biological Trace Element Research, 200(9). https://doi.org/10.1007/s12011-021-03006-4
  • Gomaa, M. A., Abdel-Nasse,r G., Maareg, M. F. and El-Kholi. M. M. (2017). Sugar beet response to nitrogen and potassium fertilization treatments in sandy soil. Journal of the Advances in Agricultural Researches (Fac. Agric. Saba Basha), 22 (2) 272-287.
  • Gupta, N., Khan, D. K. and Santra, S. C. (2008). An assessment of heavy metal contamination in vegetables grown in wastewater-irrigated areas of Titagarh, West Bengal, India. Bulletin of Environmental Contamination and Toxicology, 80(2), 115–118. https://doi.org/10.1007/S00128-007-9327-Z/TABLES/3
  • Hossein Baghaie, A. and Id Fereydoni, M. (2019). The potential risk of heavy metals on human health due to the daily consumption of vegetables. Environmental Health Engineering and Management Journal, 6(1), 11–16. https://doi.org/10.15171/EHEM.2019.02
  • İzol, E., Çiçek, İ., Behçet, L., Kaya, E. and Tarhan, A. (2023). Trace element analysis of some medicinal and aromatic plant species by ICP-MS. Türk Doğa ve Fen Dergisi, 12(1), 21-29. https://doi.org/10.46810/tdfd.1113610
  • İzol, E. and İnik, O. (2022). Topraktaki Ağır Metallerin Güncel Analiz Yöntemleri. Avrupa Bilim ve Teknoloji Dergisi, 116-120. DOI: 10.31590/ejosat.1111496. https://dergipark.org.tr/en/download/article-file/2407209
  • İzol, E., Kaya, E. and Karahan, D. (2021). Investigation of Some Metals in Honey Samples Produced in Different Regions of Bingöl Province by ICP-MS. Mellifera 21(1), 1–17. https://dergipark.org.tr/en/download/article-file/1584281
  • Jalali, M. and Meyari, A. (2022). Heavy metal contents, soil-to-plant transfer factors, and associated health risks in vegetables grown in western Iran. Journal of Food Composition and Analysis, 106. https://doi.org/10.1016/j.jfca.2021.104316
  • Janssens, T. K. S., Roelofs, D. and Van Straalen, N. M. (2009). Molecular mechanisms of heavy metal tolerance and evolution in invertebrates. Insect Science, 16(1), 3–18. https://doi.org/10.1111/J.1744-7917.2009.00249.X
  • Kayika, P., Siachoono, S. M., Kalinda, C. and Kwenye, J. M. (2017). An investigation of concentrations of copper, cobalt and cadmium minerals in soils and mango fruits growing on Konkola copper mine tailings dam in Chingola, Zambia. Archives of Science, 1(1), 1-4.
  • Khan, M. N., Aslam, M. A., Muhsinah, A. and Bin Uddin, J. (2023). Heavy metals in vegetables: screening health risks of irrigation with wastewater in peri-urban areas of Bhakkar, Pakistan. Toxics, 11(5). https://doi.org/10.3390/toxics11050460
  • Kumar, P., Dipti Kumar, S. and Singh, R. P. (2022). Severe contamination of carcinogenic heavy metals and metalloid in agroecosystems and their associated health risk assessment. Environmental Pollution, 301. https://doi.org/10.1016/j.envpol.2022.118953
  • Leblebici, Z. and Kar, M. (2018). Heavy metals accumulation in vegetables irrigated with different water sources and their human daily intake in Nevsehir. Journal of Agricultural Science and Technology, 20(2), 401-415.
  • Leblebici, Z., Kar, M. and Başaran, L. (2020). Assessment of the heavy metal accumulation of various green vegetables grown in Nevşehir and their risks human health. Environmental Monitoring and Assessment, 192(7). https://doi.org/10.1007/s10661-020-08459-z
  • Liu, C., Wang, Y., Zhao, J., Zeng, Q. and Lei, F. (2022). Assessment of cadmium accumulation in rice and risk on human health in the northeast Sichuan Province. Geology in China, 49(3). https://doi.org/10.12029/gc20220302
  • Liu, Q., Li, X. and He, L. (2022). Health risk assessment of heavy metals in soils and food crops from a coexist area of heavily industrialized and intensively cropping in the Chengdu Plain, Sichuan, China. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.988587
  • Marvin, H. J. P., Kleter, G. A., Van der Fels-Klerx, H. J., Noordam, M. Y., Franz, E., Willems, D. J. M., Boxall, A. (2013). Proactive systems for early warning of potential impacts of natural disasters on food safety: Climate-change-induced extreme events as case in point. Food Control, 34(2), 444–456. https://doi.org/10.1016/J.FOODCONT.2013.04.037
  • Mwelwa, S., Chungu, D., Tailoka, F., Beesigamukama, D. and Tanga, C. (2023). Biotransfer of heavy metals along the soil-plant-edible insect-human food chain in Africa. Science of the Total Environment, 881. https://doi.org/10.1016/j.scitotenv.2023.163150
  • Nagajyoti, P. C., Lee, K. D. and Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters 8(3), 199–216. https://doi.org/10.1007/S10311-010-0297-8
  • Navas-Acien, A., Selvin, E., Sharrett, A. R., Calderon-Aranda, E., Silbergeld, E., Guallar, E. (2004). Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation, 109(25), 3196–3201. https://doi.org/10.1161/01.CIR.0000130848.18636.B2
  • Nazmul, G., Rahmani, H. and Sternberg, S. P. K. (1999). Bioremoval of lead from water using Lemna minor. Bioresource Technology, 70(3), 225-230. https://doi.org/10.1016/S0960-8524(99)00050-4
  • Rai, G. K., Bhat, B.A., Mushtaq, M., Tariq, L., Rai, P. K., Basu, U., Dar, A. A., Islam, S. T., Dar, T. U. H., Bhat, J. A. (2021). Insights into decontamination of soils by phytoremediation: A detailed account on heavy metal toxicity and mitigation strategies. Physiologia Plantarum, 173(1), 287–304. https://doi.org/10.1111/PPL.13433
  • Schrögel, P. and Wätjen, W. (2019). Insects for food and feed-safety aspects related to mycotoxins and metals. Foods, 8(8), 288. https://doi.org/10.3390/FOODS8080288
  • USEPA, (2001). Risk assessment guidance for superfund: volume iii. part a, pro- cess for con- ducting probabilistic risk. assessment. us environmental protection.
  • USEPA, (2009). Risk assessment guidance for superfund volume i: human health evaluation manual (part f, supplemental guidance for inhalation risk assessment). off. superfund remediat. technol. innov. environ. prot. agency I, 1–68 doi: EPA-540-R-070-002.
  • WHO (2004). Evaluation of certain food additives and contaminants. In: Sixty-first report of the joint FAO/WHO Expert.
  • Xie, P., Zahoor, F., Iqbal, S. S., Zahoor Ullah, S., Noman, M., Din, Z. U. and Yang, W. (2022). Elimination of toxic heavy metals from industrial polluted water by using hydrophytes. Journal of Cleaner Production, 352. https://doi.org/10.1016/j.jclepro.2022.131358
  • Xing, W., Liu, H., Banet, T., Wang, H., Ippolito, J. A. and Li, L. (2020). Cadmium, copper, lead and zinc accumulation in wild plant species near a lead smelter. Ecotoxicology and Environmental Safety, 198. https://doi.org/10.1016/j.ecoenv.2020.110683
  • Zhang, Z., Zhang, Q., Liu, G., Zhao, J., Xie, W., Shang, S., Luo, J., Liu, J., Huang, W., Li, J., Zhang, Y., Xu, J. and Zhang, J. (2022). Accumulation of Co, Ni, Cu, Zn and Cd in aboveground organs of chinese winter jujube from the Yellow River Delta, China. International Journal of Environmental Research and Public Health, 19(16). https://doi.org/10.3390/ijerph191610278

Beta vulgaris L.'e (Şeker Pancarı) Topraktan Ağır Metal Transferinin Belirlenmesi ve İnsan Sağlığı Risklerinin Değerlendirilmesi

Year 2024, Volume: 14 Issue: 4, 2103 - 2114, 15.12.2024
https://doi.org/10.31466/kfbd.1522895

Abstract

Ağır metaller topraktan bitkilere geçerek, şeker pancarı gibi bitkilerin gelişimini olumsuz etkilemektedirler. Çalışmamızda Kayseri'de yetiştirilen şeker pancarı bitkilerinde ağır metal birikiminin araştırılması amaçlanmıştır. Kesik, Dağılgan, Hacılımezarlığı, Kıraç Tepe, Hacıbektaş ve kontrol alanı (Kilcan) olmak üzere, altı farklı lokasyon seçilmiştir.
Beta vulgaris bitkisinin yaprak, gövde, kök kısımlarından ve yetiştiği toprak örnekleri alınmıştır. Ağır metal içerikleri ICP-MS cihazı kullanılarak analiz edilmiştir. Kayseri ilinde şeker pancarı tüketimi açısından ağır metal birikiminin ve sağlık risklerinin belirlenmesi, bu metaller açısından oldukça önemli olacaktır. Bölgeden toplanan şeker pancarı örneklerinde ağır metal konsantrasyon düzeyleri şu şekildedir; bakır (Cu) > nikel (Ni) > krom (Cr) > arsenik (As) > kurşun (Pb) > kadmiyum (Cd). As, Cd ve Cr elementleri WHO/FAO tarafından belirlenen sınır değerlerle karşılaştırıldığında izin verilen sınırlar içerisinde olduğu görülmektedir. Cu (3.25 μg g−1) Ni (2.49 μg g−1) ve Pb (0.26 μg g−1) değerleri incelendiğinde, sonuçlar şeker pancarı tüketiminin sağlığa olumsuz katkı potansiyeline işaret etmektedir. Çalışma, Kayseri ili Yeşilhisar'da yetiştirilen şeker pancarı örneklerinde değerlendirilen ağır metal içeriklerine ilişkin Cu, Ni ve Pb elementleri açısından sağlık endişelerini ortaya koymaktadır.

Supporting Institution

Nevşehir Hacı Bektaş Veli Üniversitesi

Project Number

TEZ22F11

Thanks

This study was supported by Nevşehir Hacı Bektaş Veli Scientific Research Projects Unit. The project number is TEZ22F11

References

  • Ahmed, S., Fatema-Tuj-Zohra Mahdi, M. M., Nurnabi, M., Alam, M. Z. and Choudhury, T. R. (2022). Health risk assessment for heavy metal accumulation in leafy vegetables grown on tannery effluent contaminated soil. Toxicology Reports, 9. https://doi.org/10.1016/j.toxrep.2022.03.009
  • Alfaro, M. R., Ugarte, O. M., Lima, L. H. V., Silva, J. R., da Silva, F. B.V., da Silva Lins, S. A. and do Nascimento, C.W. (2022). Risk assessment of heavy metals in soils and edible parts of vegetables grown on sites contaminated by an abandoned steel plant in Havana. Environmental Geochemistry and Health, 44(1). https://doi.org/10.1007/s10653-021-01092-w
  • Antoniadis, V., Golia, E. E., Liu, Y. T., Wang, S. L., Shaheen, S. M and Rinklebe, J. (2019). Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environment International, 124, 79–88. https://doi.org/10.1016/j.envint.2018.12.053
  • Butt, A., Qurat-ul-Ain, Rehman, K., Khan, M. X. and Hesselberg, T. (2018). Bioaccumulation of cadmium, lead, and zinc in agriculture-based insect food chains. Environmental Monitoring and Assessment 190:1–12. https://doi.org/10.1007/S10661-018-7051-2/FIGURES/2
  • Chen, F., Muhammad, F. G., Khan, Z. I., Ahmad, K., Malik, I. S., Ashfaq, A., Naeem, M., Nadeem, M., Ma, J., Awan, M. U. F., Mahpara. S. and Mehmood, S. (2022). Bioaccumulation and transfer of zinc in soil plant and animal system: a health risk assessment for the grazing animals. Environmental Science and Pollution Research, 29(2). https://doi.org/10.1007/s11356-021-15808-z
  • Ekinci, Y. E., Kulan, E. G. and Kaya, M. D. (2022). Ülkemizde şeker pancarı tohumluk üretimi. Turkish Journal of Agriculture - Food Science and Technology, 10(3), 489–495. https://doi.org/10.24925/turjaf.v10i3.489-495.4820
  • FAO. (1998) Food and Agriculture Organization of the United Nations. Soil map of the World, Revised Legend - WSRR #60.
  • FAO/WHO. (2011) Joint FAO/WHO Food Standards Programme Codex Committee on contaminants in foods. Food CF/5INF/1:1–89.
  • Gao, Y., Duan, Z., Zhang, L., Sun, D. and Li, X. (2022). The status and research progress of cadmium pollution in rice- (Oryza sativa L.) and wheat- (Triticum aestivum L.) cropping systems in China: A Critical Review. In Toxics 10 (12). https://doi.org/10.3390/toxics10120794
  • Garg, A., Garg, A., Tai, K. and Sreedeep, S. (2014). An integrated SRM-multi-gene genetic programming approach for prediction of factor of safety of 3-D soil nailed slopes. Engineering Applications of Artificial Intelligence, 30, 30–40. https://doi.org/10.1016/J.ENGAPPAI.2013.12.011
  • Giri, A., Bharti, V. K., Kalia, S., Acharya, S., Kumar, B. and Chaurasia, O. P. (2022). Health risk assessment of heavy metals due to wheat, cabbage, and spinach consumption at cold-arid high altitude region. Biological Trace Element Research, 200(9). https://doi.org/10.1007/s12011-021-03006-4
  • Gomaa, M. A., Abdel-Nasse,r G., Maareg, M. F. and El-Kholi. M. M. (2017). Sugar beet response to nitrogen and potassium fertilization treatments in sandy soil. Journal of the Advances in Agricultural Researches (Fac. Agric. Saba Basha), 22 (2) 272-287.
  • Gupta, N., Khan, D. K. and Santra, S. C. (2008). An assessment of heavy metal contamination in vegetables grown in wastewater-irrigated areas of Titagarh, West Bengal, India. Bulletin of Environmental Contamination and Toxicology, 80(2), 115–118. https://doi.org/10.1007/S00128-007-9327-Z/TABLES/3
  • Hossein Baghaie, A. and Id Fereydoni, M. (2019). The potential risk of heavy metals on human health due to the daily consumption of vegetables. Environmental Health Engineering and Management Journal, 6(1), 11–16. https://doi.org/10.15171/EHEM.2019.02
  • İzol, E., Çiçek, İ., Behçet, L., Kaya, E. and Tarhan, A. (2023). Trace element analysis of some medicinal and aromatic plant species by ICP-MS. Türk Doğa ve Fen Dergisi, 12(1), 21-29. https://doi.org/10.46810/tdfd.1113610
  • İzol, E. and İnik, O. (2022). Topraktaki Ağır Metallerin Güncel Analiz Yöntemleri. Avrupa Bilim ve Teknoloji Dergisi, 116-120. DOI: 10.31590/ejosat.1111496. https://dergipark.org.tr/en/download/article-file/2407209
  • İzol, E., Kaya, E. and Karahan, D. (2021). Investigation of Some Metals in Honey Samples Produced in Different Regions of Bingöl Province by ICP-MS. Mellifera 21(1), 1–17. https://dergipark.org.tr/en/download/article-file/1584281
  • Jalali, M. and Meyari, A. (2022). Heavy metal contents, soil-to-plant transfer factors, and associated health risks in vegetables grown in western Iran. Journal of Food Composition and Analysis, 106. https://doi.org/10.1016/j.jfca.2021.104316
  • Janssens, T. K. S., Roelofs, D. and Van Straalen, N. M. (2009). Molecular mechanisms of heavy metal tolerance and evolution in invertebrates. Insect Science, 16(1), 3–18. https://doi.org/10.1111/J.1744-7917.2009.00249.X
  • Kayika, P., Siachoono, S. M., Kalinda, C. and Kwenye, J. M. (2017). An investigation of concentrations of copper, cobalt and cadmium minerals in soils and mango fruits growing on Konkola copper mine tailings dam in Chingola, Zambia. Archives of Science, 1(1), 1-4.
  • Khan, M. N., Aslam, M. A., Muhsinah, A. and Bin Uddin, J. (2023). Heavy metals in vegetables: screening health risks of irrigation with wastewater in peri-urban areas of Bhakkar, Pakistan. Toxics, 11(5). https://doi.org/10.3390/toxics11050460
  • Kumar, P., Dipti Kumar, S. and Singh, R. P. (2022). Severe contamination of carcinogenic heavy metals and metalloid in agroecosystems and their associated health risk assessment. Environmental Pollution, 301. https://doi.org/10.1016/j.envpol.2022.118953
  • Leblebici, Z. and Kar, M. (2018). Heavy metals accumulation in vegetables irrigated with different water sources and their human daily intake in Nevsehir. Journal of Agricultural Science and Technology, 20(2), 401-415.
  • Leblebici, Z., Kar, M. and Başaran, L. (2020). Assessment of the heavy metal accumulation of various green vegetables grown in Nevşehir and their risks human health. Environmental Monitoring and Assessment, 192(7). https://doi.org/10.1007/s10661-020-08459-z
  • Liu, C., Wang, Y., Zhao, J., Zeng, Q. and Lei, F. (2022). Assessment of cadmium accumulation in rice and risk on human health in the northeast Sichuan Province. Geology in China, 49(3). https://doi.org/10.12029/gc20220302
  • Liu, Q., Li, X. and He, L. (2022). Health risk assessment of heavy metals in soils and food crops from a coexist area of heavily industrialized and intensively cropping in the Chengdu Plain, Sichuan, China. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.988587
  • Marvin, H. J. P., Kleter, G. A., Van der Fels-Klerx, H. J., Noordam, M. Y., Franz, E., Willems, D. J. M., Boxall, A. (2013). Proactive systems for early warning of potential impacts of natural disasters on food safety: Climate-change-induced extreme events as case in point. Food Control, 34(2), 444–456. https://doi.org/10.1016/J.FOODCONT.2013.04.037
  • Mwelwa, S., Chungu, D., Tailoka, F., Beesigamukama, D. and Tanga, C. (2023). Biotransfer of heavy metals along the soil-plant-edible insect-human food chain in Africa. Science of the Total Environment, 881. https://doi.org/10.1016/j.scitotenv.2023.163150
  • Nagajyoti, P. C., Lee, K. D. and Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters 8(3), 199–216. https://doi.org/10.1007/S10311-010-0297-8
  • Navas-Acien, A., Selvin, E., Sharrett, A. R., Calderon-Aranda, E., Silbergeld, E., Guallar, E. (2004). Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation, 109(25), 3196–3201. https://doi.org/10.1161/01.CIR.0000130848.18636.B2
  • Nazmul, G., Rahmani, H. and Sternberg, S. P. K. (1999). Bioremoval of lead from water using Lemna minor. Bioresource Technology, 70(3), 225-230. https://doi.org/10.1016/S0960-8524(99)00050-4
  • Rai, G. K., Bhat, B.A., Mushtaq, M., Tariq, L., Rai, P. K., Basu, U., Dar, A. A., Islam, S. T., Dar, T. U. H., Bhat, J. A. (2021). Insights into decontamination of soils by phytoremediation: A detailed account on heavy metal toxicity and mitigation strategies. Physiologia Plantarum, 173(1), 287–304. https://doi.org/10.1111/PPL.13433
  • Schrögel, P. and Wätjen, W. (2019). Insects for food and feed-safety aspects related to mycotoxins and metals. Foods, 8(8), 288. https://doi.org/10.3390/FOODS8080288
  • USEPA, (2001). Risk assessment guidance for superfund: volume iii. part a, pro- cess for con- ducting probabilistic risk. assessment. us environmental protection.
  • USEPA, (2009). Risk assessment guidance for superfund volume i: human health evaluation manual (part f, supplemental guidance for inhalation risk assessment). off. superfund remediat. technol. innov. environ. prot. agency I, 1–68 doi: EPA-540-R-070-002.
  • WHO (2004). Evaluation of certain food additives and contaminants. In: Sixty-first report of the joint FAO/WHO Expert.
  • Xie, P., Zahoor, F., Iqbal, S. S., Zahoor Ullah, S., Noman, M., Din, Z. U. and Yang, W. (2022). Elimination of toxic heavy metals from industrial polluted water by using hydrophytes. Journal of Cleaner Production, 352. https://doi.org/10.1016/j.jclepro.2022.131358
  • Xing, W., Liu, H., Banet, T., Wang, H., Ippolito, J. A. and Li, L. (2020). Cadmium, copper, lead and zinc accumulation in wild plant species near a lead smelter. Ecotoxicology and Environmental Safety, 198. https://doi.org/10.1016/j.ecoenv.2020.110683
  • Zhang, Z., Zhang, Q., Liu, G., Zhao, J., Xie, W., Shang, S., Luo, J., Liu, J., Huang, W., Li, J., Zhang, Y., Xu, J. and Zhang, J. (2022). Accumulation of Co, Ni, Cu, Zn and Cd in aboveground organs of chinese winter jujube from the Yellow River Delta, China. International Journal of Environmental Research and Public Health, 19(16). https://doi.org/10.3390/ijerph191610278
There are 39 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Articles
Authors

Hayrunisa Bülbül 0000-0001-6843-417X

Zeliha Leblebici 0000-0002-6127-3809

Project Number TEZ22F11
Publication Date December 15, 2024
Submission Date July 26, 2024
Acceptance Date December 13, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Bülbül, H., & Leblebici, Z. (2024). Determination of Heavy Metal Transfer from Soil to Beta vulgaris L. (Sugar Beet) and Evaluation of Human Health Risks. Karadeniz Fen Bilimleri Dergisi, 14(4), 2103-2114. https://doi.org/10.31466/kfbd.1522895