Research Article
BibTex RIS Cite

Investigation of Environmental Impacts of Ready Concrete Production Facilities

Year 2024, Volume: 14 Issue: 4, 2311 - 2327, 15.12.2024
https://doi.org/10.31466/kfbd.1561230

Abstract

The carbon emission value resulting from production activities in the ready-mixed concrete and concrete products production facility in Muğla province was calculated. The carbon emission value has been determined for 2023 according to the emission sources in the facility. Emission sources in the facility were the use of fuel for personnel transfer and product shipment, the use of electricity, natural gas, and water needed in the production process; wastewater, waste oil, and paper cardboard as wastes. The factors were classified according to ISO 14064:2018 and GHG Protocol. IPCC Tier 1 methodology was used in the calculation. DEFRA and IPCC national databases were used for emission factors while the Turkish Republic Ministry of Energy and Natural Resources Energy Efficiency and Environment Department Turkey National Electricity Grid Emission Factor was used for electricity emission factor data. Numerous actions can result in the production of the three fundamental gases CO2, CH4, and N2O. The global warming potentials of the three basic gases (CO2, CH4, and N2O) were used to calculate the results in tCO2e in the carbon emission. The CO2 emission value of electricity consumption from the use of machinery, equipment, and installations in the facility in 2023 was determined as 177.007 tCO2. The total emission value resulting from fuel consumption was calculated as 4482.649 tCO2. The total CO2 emission value resulting from natural gas used in the production process was determined as 508.1128 tCO2. CO2 emissions resulting from water consumption were calculated as 3.594 tCO2. The CO2 emission values resulting from the formation of wastewater, waste oil, and paper cardboard waste were determined as 0.1077, 0.0117, and 0.00192 tCO2, respectively. By evaluating all activity data during the production of ready-mixed concrete and concrete products, the total CO2 emission value of the facility was 5171.484 tCO2. The activity that contributes the most to the CO2 emission value is fuel consumption. Fuel consumption was followed by natural gas and electricity consumption, respectively. Although the facility has low emission values, it is very important to minimize emissions to achieve the 2050 targets.

References

  • Barrow, M., Buckley, B., Caldicott, T., Cumberlege T., Hsu, John., Kaufman, S., (2013). Greenhouse Gas Protocol, Technical Guidance for Calculating Scope 3 Emissions.
  • Başoğul, Y., Göksu, T. T., & Baran, M. F. (2021). Bir Tekstil Fabrikasının Karbon Ayak İzinin Değerlendirilmesi. Avrupa Bilim Ve Teknoloji Dergisi (31), 146-150. https://doi.org/10.31590/ejosat.1006302
  • Blankendaal, T., Schuur, P., Voordijk, H., (2014). Reducing the environmental impact of concrete and asphalt: a scenario approach. J. Clean. Prod., 66, 27–36. Retrieved from https://doi.org/10.1016/j.jclepro.2013.10.012
  • Buendia, E.C., Guendehou S., Limmeechokchai, B., Pipatti, R., Rojas Y., Sturgiss R., Towprayoon, S., (2019). Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
  • Civelekoğlu, G., Bıyık, Y., (2018). Ulaşım sektöründen kaynaklı karbon ayak izi değişiminin incelenmesi. Bilge International Journal of Science and Technology Research, 2(2), 157-166.
  • Colangelo, F., Russo, P., Cimino, F., Cioffi, R., Farina, I., Fraternali, F., Feo, L., (2007). Epoxy/glass fibres composites for civil applications: comparison between thermal and microwave crosslinking routes. Compos. Part B Eng., 126, 100–107. Retrieved from https://doi.org/10.1016/j.compositesb.2017.06.003
  • Colangelo, F., Forcina, A., Farina, I., Petrillo, A., (2018). Life Cycle Assessment (LCA) of different kinds of concrete containing waste for sustainable construction. Buildings, 8, 70. Retrieved from https://doi.org/10.3390/buildings8050070
  • Coşkun, U. (2007). Hazır beton santrallerinde geri dönüşüm sistemi ile kazanılan atık suyun (milli su) beton üretiminde değerlendirilmesi, Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü, Yapı Eğitimi Anabilim Dalı, Afyon.
  • Del Serrone, G., Moretti, L. (2023). A stepwise regression to identify relevant variables affecting the environmental impacts of clinker production. J. Clean. Prod., 398, 136564. Retrieved from https://doi.org/10.1016/j.jclepro.2023.136564
  • Dindar, G. (2021). Otomotiv Yan Sanayinde Karbon Ayak Izinin hesaplanması–Bursa İli örneği Bursa Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Garg, A., Kazunari, K., Pulles, T. (2006). IPCC Guidelines for National Greenhouse Gas Inventories, Chapter 1.
  • Karakule, F., Akakın, T. (2005). Hazır beton sektörünün gelişimi ve özel beton uygulamalarında Türkiye’deki durum, 6. Ulusal Beton Kongresi, İstanbul, 113-124.
  • Khasreen, M., Banfill, P.F., Menzies, G. (2009). Life-cycle assessment and the environmental impact of buildings: a review. Sustainability, 1, 674–701. Retrieved from https://doi.org/10.3390/su1030674
  • Krausmann, F., Lauk, C., Haas, W., Wiedenhofer, D. (2018). From resource extraction to outflows of wastes and emissions: the socioeconomic metabolism of the global economy, 1900–2015, Glob. Environ. Chang., 52, 131–140. Retrieved from https://doi.org/10.1016/j.gloenvcha.2018.07.003
  • Letcher, T. M., (2021). Global warming-a complex situation. Climate Change: Observed Impacts on Planet Earth, Third Edition, Elsevier, 3–17.
  • Lu, Q.-B., (2013). Cosmıc-ray-driven reactıon and greenhouse effect of halogenated molecules: culprits for atmospheric ozone depletion and global climate change, International Journal of Modern Physics B, 27(17), 1350073.
  • Messina, F., Colangelo, Cioffi, R. (2018). Alkali activated waste fly ash as sustainable composite: Influence of curing and pozzolanic admixtures on the early-age physicomechanical properties and residual strength after exposure at elevated temperature. Compos. Part B Eng., 132, 161–169. Retrieved from https://doi.org/10.1016/j.compositesb.2017.08.012
  • Miyan, N., Omur, T., Amed, B., Özkan, H., Aydın, R., Kabay, N. (2024). Recycled waste concrete and metakaolin based alkali-activated paste: characterization, optimization, and life cycle assessment. Constr. Build. Mater., 416, 135233. Retrieved from https://doi.org/10.1016/j.conbuildmat.2024.135233
  • Mutlu, V., Özgür, C., & Kaplan Bekaroğlu, Ş. Ş. (2018). Kauçuk Endüstrisinde Karbon Ayak İzinin Belirlenmesi. Bilge International Journal of Science and Technology Research, 2(2), 139-146. https://doi.org/10.30516/bilgesci.434223
  • Nallı, E. (2006). Hazır beton santrali atık suyunun beton üretiminde karma suyu olarak kullanılabilirliğinin araştırılması, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Yapı Eğitimi Anabilim Dalı, Ankara.
  • Paula, H. M., Oliveira Ilha, M. S., Andrade, L. S. (2016). Chemical coagulants and Moringa oleifera seed extract for treating concrete wastewater. Acta Scientiarum Technology, 38(1), 57-64.
  • R. Arora, K. Kumar, R. Saini, K. Sharma, S. Dixit, A. Kumar Dixit, N. Taskaeva, Potential utilization of waste materials for the production of green concrete: a review. Mater. Today Proc., 69 (2022). 317–322. Retrieved from https://doi.org/10.1016/j.matpr.2022.08.542
  • Sbahieh, S., Tahir, F., Al-Ghamdi, S.G. (2022). Environmental and mechanical performance of different fiber reinforced polymers in beams. Mater. Today Proc., 62(6), 3548-3552. Retrieved from https://doi.org/10.1016/j.matpr.2022.04.398
  • Tahir, F., Sbahieh, S., Al-Ghamdi, S.G. (2022). Environmental impacts of using recycled plastics in concrete. Mater. Today Proc., 62(6), 4013-4017. Retrieved from https://doi.org/10.1016/j.matpr.2022.04.593
  • Tam, V.W.Y. (2009). Comparing the implementation of concrete recycling in the Australian and Japanese construction industries. J. Clean. Prod., 17, 688–702. Retrieved from https://doi.org/10.1016/j.jclepro.2008.11.015
  • Terán-Cuadrado, G., Sbahieh, S., Tahir, F., Nurdiawati, A., Almarshoud, M.A., Al-Ghamdi, S.G. (2024). Evaluating the influence of functional unit on life cycle assessment (LCA) reliability of concrete. Mater. Today Proc., Retrieved from https://doi.org/10.1016/j.matpr.2024.04.079
  • TS ISO (2019). TS ISO 14064-1 Sera Gazları- Bölüm 1: Sera Gazı Emisyonlarının ve Uzaklaştırmalarının Kuruluş Seviyesinde Hesaplanmasına ve Rapor Edilmesine Dair Kılavuz ve Özellikleri.
  • Tuckett, R. P. (2009). The Role of Atmospheric Gases in Global Warming, In Climate Change: Observed Impacts on Planet Earth, Elsevier, 3-19.
  • Turkish Ready Mixed Concrete Association, (2023). Turkish Ready Mixed Concrete Association Statistics, Istanbul.
  • URL-1. http://www.gelisim.org/index.php?bolum=iso14064, (Erişim Tarihi: 18.11.2023).
  • URL-2. https://www.iso.org/standard/66453.html, (Erişim Tarihi: 27.01.2024).
  • URL-3 https://www.ipcc.ch/about/history/, (Erişim Tarihi:18.11.2023).
  • URL-4. https://www.epa.gov/air-emissions-modeling, (Erişim Tarihi: 18.11.2023).
  • URL-5.https://www.statista.com/statistics/244083/production-of-ready-mix-concrete-in-european-countries/#statisticContainer, 2024.
  • URL-6. https://enerji.gov.tr/evced-cevre-ve-iklim-turkiye-ulusal-elektrik-sebekesi-emisyon-faktoru, (Erişim tarihi: 18.11.2023).
  • URL-7. https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2024., (Erişim Tarihi: 15.09.2024).
  • Waldron, C. D. (2006a). Chapter 3: Mobile Combustion, Volume 2: Energy, IPCC Guidelines for National Greenhouse Gas Inventories.
  • Waldron, C. D. (2006b). Chapter 6, Wastewater Treatment And Discharge, Volume 5, Waste, IPCC Guidelines for National Greenhouse Gas Inventories.
  • Yan, H., Shen, Q., Fan, L.C.H., Wang, Y., Zhang, L. (2010). Greenhouse gas emissions in building construction: a case study of One Peking in Hong Kong. Build. Environ. 45, 949–955. Retrieved from https://doi.org/10.1016/j.buildenv.2009.09.014
  • Zabalza Bribián, I., Valero Capilla, A., Aranda Usón, A. (2011). Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build. Environ. 46, 1133–1140. Retrieved from https://doi.org/10.1016/j.buildenv.2010.12.002

Hazır Beton Üretim Tesislerinin Çevresel Etkilerinin İncelenmesi

Year 2024, Volume: 14 Issue: 4, 2311 - 2327, 15.12.2024
https://doi.org/10.31466/kfbd.1561230

Abstract

Muğla ilinde bulunan hazır beton ve beton ürünleri üretim tesisinde üretim faaliyetlerinden kaynaklanan karbon emisyon değeri hesaplanmıştır. Tesisteki emisyon kaynaklarına göre 2023 yılı karbon emisyon değeri belirlenmiştir. Tesisteki emisyon kaynakları; personel transferi ve ürün sevkiyatı için yakıt kullanımı, üretim sürecinde ihtiyaç duyulan elektrik, doğal gaz ve su kullanımı; atık olarak ise atık su, atık yağ ve kağıt kartondur. Faktörler ISO 14064:2018 ve GHG Protokolü’ne göre sınıflandırılmıştır. Hesaplamada IPCC Tier 1 metodolojisi kullanılmıştır. Emisyon faktörleri için DEFRA ve IPCC ulusal veri tabanları kullanılırken, elektrik emisyon faktörü verileri için Türkiye Cumhuriyeti Enerji ve Tabii Kaynaklar Bakanlığı Enerji Verimliliği ve Çevre Dairesi Türkiye Ulusal Elektrik Şebekesi Emisyon Faktörü kullanıldı. Çok sayıda faaliyet, üç temel gaz olan CO2, CH4 ve N2O’nun oluşumuna yol açabilir. Karbon emisyonunda tCO2e cinsinden sonuçları hesaplamak için üç temel gazın (CO2, CH4 ve N2O) küresel ısınma potansiyelleri kullanıldı. Tesiste 2023 yılında makine, ekipman ve tesisatların kullanımından kaynaklanan elektrik tüketimine ait CO2 emisyon değeri 177.007 tCO2 olarak belirlenmiştir. Yakıt tüketiminden kaynaklanan toplam emisyon değeri 4482,649 tCO2 olarak hesaplanmıştır. Üretim sürecinde kullanılan doğalgazdan kaynaklanan toplam CO2 emisyon değeri 508,1128 tCO2 olarak belirlenmiştir. Su tüketiminden kaynaklanan CO2 emisyonu 3,594 tCO2 olarak hesaplanmıştır. Atıksu, atık yağ ve kağıt karton atığının oluşumundan kaynaklanan CO2 emisyon değerleri sırasıyla 0,1077, 0,0117 ve 0,00192 tCO2 olarak belirlenmiştir. Hazır beton ve beton ürünleri üretimi sırasındaki tüm faaliyet verileri değerlendirildiğinde, tesisin toplam CO2 emisyon değeri 5171,484 tCO2 olarak bulunmuştur. CO2 emisyon değerine en çok katkıda bulunan faaliyet yakıt tüketimidir. Yakıt tüketimini sırasıyla doğal gaz ve elektrik tüketimi takip etmiştir. Tesis düşük emisyon değerlerine sahip olsa da, 2050 hedeflerine ulaşmak için emisyonları en aza indirmek çok önemlidir.

Ethical Statement

The author declares that this study complies with Research and Publication Ethics.

References

  • Barrow, M., Buckley, B., Caldicott, T., Cumberlege T., Hsu, John., Kaufman, S., (2013). Greenhouse Gas Protocol, Technical Guidance for Calculating Scope 3 Emissions.
  • Başoğul, Y., Göksu, T. T., & Baran, M. F. (2021). Bir Tekstil Fabrikasının Karbon Ayak İzinin Değerlendirilmesi. Avrupa Bilim Ve Teknoloji Dergisi (31), 146-150. https://doi.org/10.31590/ejosat.1006302
  • Blankendaal, T., Schuur, P., Voordijk, H., (2014). Reducing the environmental impact of concrete and asphalt: a scenario approach. J. Clean. Prod., 66, 27–36. Retrieved from https://doi.org/10.1016/j.jclepro.2013.10.012
  • Buendia, E.C., Guendehou S., Limmeechokchai, B., Pipatti, R., Rojas Y., Sturgiss R., Towprayoon, S., (2019). Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
  • Civelekoğlu, G., Bıyık, Y., (2018). Ulaşım sektöründen kaynaklı karbon ayak izi değişiminin incelenmesi. Bilge International Journal of Science and Technology Research, 2(2), 157-166.
  • Colangelo, F., Russo, P., Cimino, F., Cioffi, R., Farina, I., Fraternali, F., Feo, L., (2007). Epoxy/glass fibres composites for civil applications: comparison between thermal and microwave crosslinking routes. Compos. Part B Eng., 126, 100–107. Retrieved from https://doi.org/10.1016/j.compositesb.2017.06.003
  • Colangelo, F., Forcina, A., Farina, I., Petrillo, A., (2018). Life Cycle Assessment (LCA) of different kinds of concrete containing waste for sustainable construction. Buildings, 8, 70. Retrieved from https://doi.org/10.3390/buildings8050070
  • Coşkun, U. (2007). Hazır beton santrallerinde geri dönüşüm sistemi ile kazanılan atık suyun (milli su) beton üretiminde değerlendirilmesi, Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü, Yapı Eğitimi Anabilim Dalı, Afyon.
  • Del Serrone, G., Moretti, L. (2023). A stepwise regression to identify relevant variables affecting the environmental impacts of clinker production. J. Clean. Prod., 398, 136564. Retrieved from https://doi.org/10.1016/j.jclepro.2023.136564
  • Dindar, G. (2021). Otomotiv Yan Sanayinde Karbon Ayak Izinin hesaplanması–Bursa İli örneği Bursa Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Garg, A., Kazunari, K., Pulles, T. (2006). IPCC Guidelines for National Greenhouse Gas Inventories, Chapter 1.
  • Karakule, F., Akakın, T. (2005). Hazır beton sektörünün gelişimi ve özel beton uygulamalarında Türkiye’deki durum, 6. Ulusal Beton Kongresi, İstanbul, 113-124.
  • Khasreen, M., Banfill, P.F., Menzies, G. (2009). Life-cycle assessment and the environmental impact of buildings: a review. Sustainability, 1, 674–701. Retrieved from https://doi.org/10.3390/su1030674
  • Krausmann, F., Lauk, C., Haas, W., Wiedenhofer, D. (2018). From resource extraction to outflows of wastes and emissions: the socioeconomic metabolism of the global economy, 1900–2015, Glob. Environ. Chang., 52, 131–140. Retrieved from https://doi.org/10.1016/j.gloenvcha.2018.07.003
  • Letcher, T. M., (2021). Global warming-a complex situation. Climate Change: Observed Impacts on Planet Earth, Third Edition, Elsevier, 3–17.
  • Lu, Q.-B., (2013). Cosmıc-ray-driven reactıon and greenhouse effect of halogenated molecules: culprits for atmospheric ozone depletion and global climate change, International Journal of Modern Physics B, 27(17), 1350073.
  • Messina, F., Colangelo, Cioffi, R. (2018). Alkali activated waste fly ash as sustainable composite: Influence of curing and pozzolanic admixtures on the early-age physicomechanical properties and residual strength after exposure at elevated temperature. Compos. Part B Eng., 132, 161–169. Retrieved from https://doi.org/10.1016/j.compositesb.2017.08.012
  • Miyan, N., Omur, T., Amed, B., Özkan, H., Aydın, R., Kabay, N. (2024). Recycled waste concrete and metakaolin based alkali-activated paste: characterization, optimization, and life cycle assessment. Constr. Build. Mater., 416, 135233. Retrieved from https://doi.org/10.1016/j.conbuildmat.2024.135233
  • Mutlu, V., Özgür, C., & Kaplan Bekaroğlu, Ş. Ş. (2018). Kauçuk Endüstrisinde Karbon Ayak İzinin Belirlenmesi. Bilge International Journal of Science and Technology Research, 2(2), 139-146. https://doi.org/10.30516/bilgesci.434223
  • Nallı, E. (2006). Hazır beton santrali atık suyunun beton üretiminde karma suyu olarak kullanılabilirliğinin araştırılması, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Yapı Eğitimi Anabilim Dalı, Ankara.
  • Paula, H. M., Oliveira Ilha, M. S., Andrade, L. S. (2016). Chemical coagulants and Moringa oleifera seed extract for treating concrete wastewater. Acta Scientiarum Technology, 38(1), 57-64.
  • R. Arora, K. Kumar, R. Saini, K. Sharma, S. Dixit, A. Kumar Dixit, N. Taskaeva, Potential utilization of waste materials for the production of green concrete: a review. Mater. Today Proc., 69 (2022). 317–322. Retrieved from https://doi.org/10.1016/j.matpr.2022.08.542
  • Sbahieh, S., Tahir, F., Al-Ghamdi, S.G. (2022). Environmental and mechanical performance of different fiber reinforced polymers in beams. Mater. Today Proc., 62(6), 3548-3552. Retrieved from https://doi.org/10.1016/j.matpr.2022.04.398
  • Tahir, F., Sbahieh, S., Al-Ghamdi, S.G. (2022). Environmental impacts of using recycled plastics in concrete. Mater. Today Proc., 62(6), 4013-4017. Retrieved from https://doi.org/10.1016/j.matpr.2022.04.593
  • Tam, V.W.Y. (2009). Comparing the implementation of concrete recycling in the Australian and Japanese construction industries. J. Clean. Prod., 17, 688–702. Retrieved from https://doi.org/10.1016/j.jclepro.2008.11.015
  • Terán-Cuadrado, G., Sbahieh, S., Tahir, F., Nurdiawati, A., Almarshoud, M.A., Al-Ghamdi, S.G. (2024). Evaluating the influence of functional unit on life cycle assessment (LCA) reliability of concrete. Mater. Today Proc., Retrieved from https://doi.org/10.1016/j.matpr.2024.04.079
  • TS ISO (2019). TS ISO 14064-1 Sera Gazları- Bölüm 1: Sera Gazı Emisyonlarının ve Uzaklaştırmalarının Kuruluş Seviyesinde Hesaplanmasına ve Rapor Edilmesine Dair Kılavuz ve Özellikleri.
  • Tuckett, R. P. (2009). The Role of Atmospheric Gases in Global Warming, In Climate Change: Observed Impacts on Planet Earth, Elsevier, 3-19.
  • Turkish Ready Mixed Concrete Association, (2023). Turkish Ready Mixed Concrete Association Statistics, Istanbul.
  • URL-1. http://www.gelisim.org/index.php?bolum=iso14064, (Erişim Tarihi: 18.11.2023).
  • URL-2. https://www.iso.org/standard/66453.html, (Erişim Tarihi: 27.01.2024).
  • URL-3 https://www.ipcc.ch/about/history/, (Erişim Tarihi:18.11.2023).
  • URL-4. https://www.epa.gov/air-emissions-modeling, (Erişim Tarihi: 18.11.2023).
  • URL-5.https://www.statista.com/statistics/244083/production-of-ready-mix-concrete-in-european-countries/#statisticContainer, 2024.
  • URL-6. https://enerji.gov.tr/evced-cevre-ve-iklim-turkiye-ulusal-elektrik-sebekesi-emisyon-faktoru, (Erişim tarihi: 18.11.2023).
  • URL-7. https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2024., (Erişim Tarihi: 15.09.2024).
  • Waldron, C. D. (2006a). Chapter 3: Mobile Combustion, Volume 2: Energy, IPCC Guidelines for National Greenhouse Gas Inventories.
  • Waldron, C. D. (2006b). Chapter 6, Wastewater Treatment And Discharge, Volume 5, Waste, IPCC Guidelines for National Greenhouse Gas Inventories.
  • Yan, H., Shen, Q., Fan, L.C.H., Wang, Y., Zhang, L. (2010). Greenhouse gas emissions in building construction: a case study of One Peking in Hong Kong. Build. Environ. 45, 949–955. Retrieved from https://doi.org/10.1016/j.buildenv.2009.09.014
  • Zabalza Bribián, I., Valero Capilla, A., Aranda Usón, A. (2011). Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build. Environ. 46, 1133–1140. Retrieved from https://doi.org/10.1016/j.buildenv.2010.12.002
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Environmental Pollution and Prevention
Journal Section Articles
Authors

Tuğçe Aydın Çora 0000-0003-0516-4656

Nurdan Gamze Turan 0000-0001-6500-6188

Publication Date December 15, 2024
Submission Date October 4, 2024
Acceptance Date December 12, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Aydın Çora, T., & Turan, N. G. (2024). Hazır Beton Üretim Tesislerinin Çevresel Etkilerinin İncelenmesi. Karadeniz Fen Bilimleri Dergisi, 14(4), 2311-2327. https://doi.org/10.31466/kfbd.1561230