Research Article
BibTex RIS Cite

Cerrahi Maskelerin Geçirgenlik Özelliklerinin Regresyon Analizi ile Tahminlenmesi

Year 2025, Volume: 15 Issue: 2, 615 - 632, 15.06.2025
https://doi.org/10.31466/kfbd.1520258

Abstract

Bu çalışmanın amacı, maskelerden beklenen ve son kullanıcı konforu için önemli olan hava ve su buharı geçirgenlik özelliklerinin üretim öncesinde kalınlık, gramaj ve gözeneklilik parametrelerine bağlı olarak tahmin edilmesidir. Bu amaçla, piyasadan temin edilen üç katlı spunbond- meltblown- spunbond (SMS) cerrahi maskelerin katman morfolojileri taramalı elektron mikroskobu (SEM) ile incelenerek; kalınlık, gramaj ve gözeneklilik gibi yapısal-fiziksel özellikleri ile hava ve su buharı geçirgenlikleri test edilmiştir. Cerrahi maskelerin ölçülen özellikleri arasındaki farkın istatistiksel olarak anlamlı olup olmadığı ANOVA testi ile belirlenmiştir. Hava geçirgenliği ve su buharı geçirgenliklerinin kalınlık, gramaj ve gözeneklilik parametreleri ile tahminlenmesine yönelik regresyon denklemleri oluşturulmuştur. İncelenen maskelerin hava geçirgenliği değerleri 81,4-149,4 l/m2/s, su buharı geçirgenlik değerleri ise 6,67-9,78 g.mm/m2.gün.kPa arasında değişmektedir. En yüksek hava geçirgenliği ve su buharı geçirgenliğine sahip maskenin gözeneklilik değerinin diğer maskelere göre daha yüksek; kalınlık ve gramaj değerlerinin ise daha düşük olduğu gözlemlenmiştir. Sonuçlar maskelerin kalınlık ve gramajındaki artışın hava ve su buharı geçirgenliği değerlerini düşürdüğünü, gözeneklilikteki artışın ise hava ve su buharı geçirgenliğini artırdığını göstermektedir. Çoklu doğrusal regresyon modeline dahil edilen gramaj, kalınlık ve gözeneklilik değerlerinin cerrahi maskelerin hava geçirgenliğini %99,6; gözeneklilik ve kalınlık değerlerinin ise su buharı geçirgenliğini %91,9 oranında açıklayabileceği bulunmuştur. Çalışmada yapılan regresyon analizi ile cerrahi maskelerin geçirgenlik özelliklerinin seçilen yapısal-fiziksel özellikler ile yüksek bir oranda açıklanabileceği ortaya konulmaktadır.

Ethical Statement

-

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Akça, B. (2023). COVID 19 Pandemi Sürecinde Kullanımı Artan Tıbbi Maskelerin Yapısal Olarak İncelenmesi ve Karşılaştırılması. Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi, Sağlık Bilimleri Enstitüsü, Bursa.
  • Akca, C., and Katı, M. İ. (2023). Investigation of the relationship between the structural properties and air, water drop and particle permeability of different masks available in the market. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 19(4), 373-380.
  • Al-Hassan, A. A. and Norziah, M. H. (2012). Starch–gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocolloids, 26(1), 108-117.
  • Angelova, R. A., Mijorski, S., Stankov, P., Sofronova, D., Velichkova, R., Simova, I., and Markov, D. (2024a). Numerical simulation of the air permeability of protective face masks. AIP Conference Proceedings, 3034(1), 020016.
  • Angelova, R. A., Sofronova, D., Dimova, M., Sofronov, Y., Velichkova, R., Stankov, P., and Simova, I. (2024b). Heat transfer through protective face masks and respirators. AIP Conference Proceedings, 3034(1), 080003.
  • Angelova, R. A., Velichkova, R., Sofronova, D., Markov, D., Dimova, M. and Simova, I., (2023, September). Air permeability of protective face masks. 2023 XXXIII International Scientific Symposium Metrology and Metrology Assurance (MMA) (pp. 1-5). Sozopol, Bulgaria.
  • Arora, S., and Majumdar, A. (2022). Face masks to fight against COVID-19 pandemics: A comprehensive review of materials, design, technology and product development. Journal of Industrial Textiles, 51(3_suppl), 3613S-3647S.
  • ASTM E96/E96M-24a (2024). Malzemelerin su buharı iletim oranının gravimetrik tayini için standart test yöntemleri.
  • ASTM UOP578-11 (2011). Civa porozimetresi ile gözenekli malzemelerin otomatik gözenek hacmi ve gözenek boyutu dağılımı.
  • Aziz, U., Nor Affandi, N., Harun, A., Rahman, M., Indrie, L., and Bonnia, N. (2024). Facemask comfort enhancement with graphene oxide from recovered carbon waste tyres. AUTEX Research Journal, 24(1), 20230013.
  • Bertuzzi, M. A., Vidaurre, E. C., Armada, M., and Gottifredi, J. C. (2007). Water vapor permeability of edible starch based films. Journal of Food Engineering, 80(3), 972-978.
  • Bhattacharjee, S., Bahl, P., Chughtai, A. A., and MacIntyre, C. R. (2020). Last-resort strategies during mask shortages: Optimal design features of cloth masks and decontamination of disposable masks during the COVID-19 pandemic. BMJ Open Respiratory Research, 7(1), e000698.
  • Celebioglu, A., Lawson, C. W., Hsiung, E. Z., Chowdhury, R., Altier, C., and Uyar, T. (2023). Antibacterial nanofibrous mat of pullulan/cinnamaldehyde-cyclodextrin inclusion complexes as a potential cloth mask layer with long-term storage stability and facile disposal property. ACS Sustainable Chemistry & Engineering, 11(30), 11269-11280.
  • Celep, G., Yilmaz, F., and Tetik, G. D. (2022). Evaluation of some physical and tensile properties of commercial surgical masks. Indian Journal of Fibre & Textile Research (IJFTR), 47(1), 125-130.
  • Choudhury, A. K. R. (2017). 7-Repellent finishes, In A. K. R. Choudhury (Ed.), Principles of Textile Finishing (pp. 149-194). Woodhead Publishing Series in Textiles, United Kingdom: Woodhead Publishing.
  • Chua, M. H., Cheng, W., Goh, S. S., Kong, J., Li, B., Lim, J. Y., and Loh, X. J. (2020). Face masks in the new COVID-19 normal: Materials, testing, and perspectives. Research, 7286735.
  • Djeghdir, S., Peyron, A., Sarry, G., Leclerc, L., Kaouane, G., Verhoeven, P. O., and Pourchez, J. (2023). Filtration efficiency of medical and community face masks using viral and bacterial bioaerosols. Scientific Reports, 13, 7115.
  • Epps, H. H., and Leonas, K. K. (2000). Pore size and air permeability of four nonwoven fabrics. International Nonwovens Journal, os-9(2), 1558925000OS-900215.
  • Fadil, F., Affandi, N. D. N., Harun, A. M., and Alam, M. K. (2022). Improvement of moisture management properties of face masks using electrospun nanofiber filter insert. Adsorption Science & Technology, 2022, 9351778.
  • Hamouda, T., Kafafy, H., Mashaly, H. M., and Aly, N. M. (2022). Breathability performance of antiviral cloth masks treated with silver nanoparticles for protection against COVID-19. Journal of Industrial Textiles, 51(9), 1494-1523.
  • Han, Z., Wang, L., Liu, Y., Chan, T., Shi, Z., and Yu, M. (2023). How do three-layer surgical masks prevent SARS-CoV-2 aerosol transmission?. Separation and Purification Technology, 314, 123574.
  • Kar, F., Fan, J., and Yu, W. (2007). Comparison of different test methods for the measurement of fabric or garment moisture transfer properties. Measurement Science and Technology, 18(7), 2033.
  • Korkmaz, G., Kılınç, M., Razak, S. A., Ocak, M., Korkmaz, S., and Kut, Y. D. T. (2023). Comparison of the performance properties of spunlaid non-woven fabrics used as face mask, The Journal of The Textile Institute, 114(2), 250-256.
  • Kulichenko, A. V. (2005). Theoretical analysis, calculation, and prediction of the air permeability of textiles. Fibre Chemistry, 37(5), 371-380.
  • Lee, K. P., Yip, J., Kan, C. W., Chiou, J. C., and Yung, K. F. (2020). Reusable face masks as alternative for disposable medical masks: factors that affect their wear-comfort. International Journal of Environmental Research and Public Health, 17(18), 6623.
  • Leonas, K. K., Jones, C. R., and Hall, D. (2003). The relationship of fabric properties and bacterial filtration efficiency for selected surgical face masks. Journal of Textile and Apparel Technology and Management, 3(2), 1-8.
  • Li, Y., Wong, T., Chung, J., Guo, Y. P., Hu, J. Y., Guan, Y. T., Yao, L., Song, Q. W., and Newton, E. (2006), In vivo protective performance of N95 respirator and surgical facemask. American Journal of Industrial Medicine, 49(12), 1056-1065.
  • McCullough, E. A., Kwon, M., and Shim, H. (2003). A comparison of standard methods for measuring water vapour permeability of fabrics. Measurement Science and Technology, 14(8), 1402–1408.
  • Memon, H., Liao, S., Maryam, R., Patrucco, A., and Riccardi, C. (2024). Development of medical masks: performance, properties, and prospects. Materials Advances, 5(21), 8333-8350.
  • Sekhar, S. C., Pabba, M., Tallam, A., Fatima, S., Butti, S. K., Vani, B., Sahu, N., and Sundergopal, S. (2023). Development of a reusable low-cost facemask with a recycled hydrophobic layer for preventive health care. Environmental Science and Pollution Research, 30(13), 36325-36336.
  • Sisodia, D., and Mittal, M. (2023). Optical microscopic methods for testing face mask efficacy for COVID-19. Materials Today: Proceedings (Article in press).
  • Şevkan Macit, A. (2024). A study on multi-layered surgical masks performance: permeability, filtration efficiency and breathability. Industria Textila, 75(1), 57-65.
  • Tarhan, Ö., and Şen R. (2022). Heat-denatured and alcalase-hydrolyzed protein films/coatings containing marjoram essential oil and thyme extract. Food Bioscience, 45, 101466.
  • Tcharkhtchi, A., Abbasnezhad, N., Seydani, M. Z., Zirak, N., Farzaneh, S., and Shirinbayan, M. (2021). An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration. Bioactive Materials, 6(1), 106-122.
  • Tharewal P. G., Landage S. M., and Wasif A. I. (2013). Application of nonwovens for air filtration. International Journal of Advanced Research in IT and Engineering, 2(2), 14-36.
  • TS 391 EN ISO 9237 (1999). Tekstil- Kumaşlarda hava geçirgenliğinin tayini.
  • Yang, A., Cai, L., Zhang, R., Wang, J., Hsu, P. C., Wang, H., Zhou, G., Xu, J. and Cui, Y. (2017). Thermal management in nanofiber-based face mask. Nano Letters, 17(6), 3506-3510.
  • Wang, D., Sun, B. C., Wang, J. X., Zhou, Y. Y., Chen, Z. W., Fang, Y., and Chen, J. F. (2020). Can masks be reused after hot water decontamination during the COVID-19 pandemic?. Engineering, 6(10), 1115-1121.
  • Zhang, Z., Ji, D., He, H., and Ramakrishna, S. (2021). Electrospun ultrafine fibers for advanced face masks. Materials Science and Engineering: R: Reports, 143, 100594.

Estimation of Permeability Properties of Surgical Masks by Regression Analysis

Year 2025, Volume: 15 Issue: 2, 615 - 632, 15.06.2025
https://doi.org/10.31466/kfbd.1520258

Abstract

The aim of this study is to estimate the air and water vapor permeability properties expected from masks, which are important for end-user comfort, before production, depending on thickness, weight per unit area, and porosity parameters. For this purpose, firstly, the layer morphologies of three-layer spunbond-meltblown-spunbond (SMS) surgical masks obtained from the market were examined by scanning electron microscope (SEM) and structural-physical properties such as thickness, weight per unit area, porosity, air and water vapor permeability were tested. The ANOVA test was used to determine whether the difference between the measured properties of the surgical masks was statistically significant. Regression equations were obtained to estimate air permeability and water vapor permeability with thickness, weight per unit area, and porosity parameters. The air permeability values of the examined masks varied between 81.4-149.4 l/m2/s and water vapor permeability values varied between 6.67-9.78 g.mm/m2.day.kPa. The results show that the increase in the thickness and weight per unit area of the masks decreases the air and water vapor permeability values, while the increase in porosity increases the air and water vapor permeability. It was found that the weight, thickness and porosity values included in the multiple linear regression model could explain the air permeability of surgical masks by 99.6%, while the porosity and thickness values could explain the water vapor permeability by 91.9%. The regression analysis performed in the study revealed that the permeability properties of surgical masks can be explained to a high extent by the selected structural-physical properties.

Project Number

-

References

  • Akça, B. (2023). COVID 19 Pandemi Sürecinde Kullanımı Artan Tıbbi Maskelerin Yapısal Olarak İncelenmesi ve Karşılaştırılması. Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi, Sağlık Bilimleri Enstitüsü, Bursa.
  • Akca, C., and Katı, M. İ. (2023). Investigation of the relationship between the structural properties and air, water drop and particle permeability of different masks available in the market. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 19(4), 373-380.
  • Al-Hassan, A. A. and Norziah, M. H. (2012). Starch–gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocolloids, 26(1), 108-117.
  • Angelova, R. A., Mijorski, S., Stankov, P., Sofronova, D., Velichkova, R., Simova, I., and Markov, D. (2024a). Numerical simulation of the air permeability of protective face masks. AIP Conference Proceedings, 3034(1), 020016.
  • Angelova, R. A., Sofronova, D., Dimova, M., Sofronov, Y., Velichkova, R., Stankov, P., and Simova, I. (2024b). Heat transfer through protective face masks and respirators. AIP Conference Proceedings, 3034(1), 080003.
  • Angelova, R. A., Velichkova, R., Sofronova, D., Markov, D., Dimova, M. and Simova, I., (2023, September). Air permeability of protective face masks. 2023 XXXIII International Scientific Symposium Metrology and Metrology Assurance (MMA) (pp. 1-5). Sozopol, Bulgaria.
  • Arora, S., and Majumdar, A. (2022). Face masks to fight against COVID-19 pandemics: A comprehensive review of materials, design, technology and product development. Journal of Industrial Textiles, 51(3_suppl), 3613S-3647S.
  • ASTM E96/E96M-24a (2024). Malzemelerin su buharı iletim oranının gravimetrik tayini için standart test yöntemleri.
  • ASTM UOP578-11 (2011). Civa porozimetresi ile gözenekli malzemelerin otomatik gözenek hacmi ve gözenek boyutu dağılımı.
  • Aziz, U., Nor Affandi, N., Harun, A., Rahman, M., Indrie, L., and Bonnia, N. (2024). Facemask comfort enhancement with graphene oxide from recovered carbon waste tyres. AUTEX Research Journal, 24(1), 20230013.
  • Bertuzzi, M. A., Vidaurre, E. C., Armada, M., and Gottifredi, J. C. (2007). Water vapor permeability of edible starch based films. Journal of Food Engineering, 80(3), 972-978.
  • Bhattacharjee, S., Bahl, P., Chughtai, A. A., and MacIntyre, C. R. (2020). Last-resort strategies during mask shortages: Optimal design features of cloth masks and decontamination of disposable masks during the COVID-19 pandemic. BMJ Open Respiratory Research, 7(1), e000698.
  • Celebioglu, A., Lawson, C. W., Hsiung, E. Z., Chowdhury, R., Altier, C., and Uyar, T. (2023). Antibacterial nanofibrous mat of pullulan/cinnamaldehyde-cyclodextrin inclusion complexes as a potential cloth mask layer with long-term storage stability and facile disposal property. ACS Sustainable Chemistry & Engineering, 11(30), 11269-11280.
  • Celep, G., Yilmaz, F., and Tetik, G. D. (2022). Evaluation of some physical and tensile properties of commercial surgical masks. Indian Journal of Fibre & Textile Research (IJFTR), 47(1), 125-130.
  • Choudhury, A. K. R. (2017). 7-Repellent finishes, In A. K. R. Choudhury (Ed.), Principles of Textile Finishing (pp. 149-194). Woodhead Publishing Series in Textiles, United Kingdom: Woodhead Publishing.
  • Chua, M. H., Cheng, W., Goh, S. S., Kong, J., Li, B., Lim, J. Y., and Loh, X. J. (2020). Face masks in the new COVID-19 normal: Materials, testing, and perspectives. Research, 7286735.
  • Djeghdir, S., Peyron, A., Sarry, G., Leclerc, L., Kaouane, G., Verhoeven, P. O., and Pourchez, J. (2023). Filtration efficiency of medical and community face masks using viral and bacterial bioaerosols. Scientific Reports, 13, 7115.
  • Epps, H. H., and Leonas, K. K. (2000). Pore size and air permeability of four nonwoven fabrics. International Nonwovens Journal, os-9(2), 1558925000OS-900215.
  • Fadil, F., Affandi, N. D. N., Harun, A. M., and Alam, M. K. (2022). Improvement of moisture management properties of face masks using electrospun nanofiber filter insert. Adsorption Science & Technology, 2022, 9351778.
  • Hamouda, T., Kafafy, H., Mashaly, H. M., and Aly, N. M. (2022). Breathability performance of antiviral cloth masks treated with silver nanoparticles for protection against COVID-19. Journal of Industrial Textiles, 51(9), 1494-1523.
  • Han, Z., Wang, L., Liu, Y., Chan, T., Shi, Z., and Yu, M. (2023). How do three-layer surgical masks prevent SARS-CoV-2 aerosol transmission?. Separation and Purification Technology, 314, 123574.
  • Kar, F., Fan, J., and Yu, W. (2007). Comparison of different test methods for the measurement of fabric or garment moisture transfer properties. Measurement Science and Technology, 18(7), 2033.
  • Korkmaz, G., Kılınç, M., Razak, S. A., Ocak, M., Korkmaz, S., and Kut, Y. D. T. (2023). Comparison of the performance properties of spunlaid non-woven fabrics used as face mask, The Journal of The Textile Institute, 114(2), 250-256.
  • Kulichenko, A. V. (2005). Theoretical analysis, calculation, and prediction of the air permeability of textiles. Fibre Chemistry, 37(5), 371-380.
  • Lee, K. P., Yip, J., Kan, C. W., Chiou, J. C., and Yung, K. F. (2020). Reusable face masks as alternative for disposable medical masks: factors that affect their wear-comfort. International Journal of Environmental Research and Public Health, 17(18), 6623.
  • Leonas, K. K., Jones, C. R., and Hall, D. (2003). The relationship of fabric properties and bacterial filtration efficiency for selected surgical face masks. Journal of Textile and Apparel Technology and Management, 3(2), 1-8.
  • Li, Y., Wong, T., Chung, J., Guo, Y. P., Hu, J. Y., Guan, Y. T., Yao, L., Song, Q. W., and Newton, E. (2006), In vivo protective performance of N95 respirator and surgical facemask. American Journal of Industrial Medicine, 49(12), 1056-1065.
  • McCullough, E. A., Kwon, M., and Shim, H. (2003). A comparison of standard methods for measuring water vapour permeability of fabrics. Measurement Science and Technology, 14(8), 1402–1408.
  • Memon, H., Liao, S., Maryam, R., Patrucco, A., and Riccardi, C. (2024). Development of medical masks: performance, properties, and prospects. Materials Advances, 5(21), 8333-8350.
  • Sekhar, S. C., Pabba, M., Tallam, A., Fatima, S., Butti, S. K., Vani, B., Sahu, N., and Sundergopal, S. (2023). Development of a reusable low-cost facemask with a recycled hydrophobic layer for preventive health care. Environmental Science and Pollution Research, 30(13), 36325-36336.
  • Sisodia, D., and Mittal, M. (2023). Optical microscopic methods for testing face mask efficacy for COVID-19. Materials Today: Proceedings (Article in press).
  • Şevkan Macit, A. (2024). A study on multi-layered surgical masks performance: permeability, filtration efficiency and breathability. Industria Textila, 75(1), 57-65.
  • Tarhan, Ö., and Şen R. (2022). Heat-denatured and alcalase-hydrolyzed protein films/coatings containing marjoram essential oil and thyme extract. Food Bioscience, 45, 101466.
  • Tcharkhtchi, A., Abbasnezhad, N., Seydani, M. Z., Zirak, N., Farzaneh, S., and Shirinbayan, M. (2021). An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration. Bioactive Materials, 6(1), 106-122.
  • Tharewal P. G., Landage S. M., and Wasif A. I. (2013). Application of nonwovens for air filtration. International Journal of Advanced Research in IT and Engineering, 2(2), 14-36.
  • TS 391 EN ISO 9237 (1999). Tekstil- Kumaşlarda hava geçirgenliğinin tayini.
  • Yang, A., Cai, L., Zhang, R., Wang, J., Hsu, P. C., Wang, H., Zhou, G., Xu, J. and Cui, Y. (2017). Thermal management in nanofiber-based face mask. Nano Letters, 17(6), 3506-3510.
  • Wang, D., Sun, B. C., Wang, J. X., Zhou, Y. Y., Chen, Z. W., Fang, Y., and Chen, J. F. (2020). Can masks be reused after hot water decontamination during the COVID-19 pandemic?. Engineering, 6(10), 1115-1121.
  • Zhang, Z., Ji, D., He, H., and Ramakrishna, S. (2021). Electrospun ultrafine fibers for advanced face masks. Materials Science and Engineering: R: Reports, 143, 100594.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Fabric Technologies, Textile Technology
Journal Section Articles
Authors

Gizem Celep 0000-0001-9618-6708

Fulya Yılmaz 0000-0003-1242-0515

Gamze Tetik 0000-0002-5968-7244

Project Number -
Publication Date June 15, 2025
Submission Date July 22, 2024
Acceptance Date May 27, 2025
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Celep, G., Yılmaz, F., & Tetik, G. (2025). Cerrahi Maskelerin Geçirgenlik Özelliklerinin Regresyon Analizi ile Tahminlenmesi. Karadeniz Fen Bilimleri Dergisi, 15(2), 615-632. https://doi.org/10.31466/kfbd.1520258