Soluble Expression of Human Granulocyte Colony Stimulating Factor (hG-CSF) in Escherichia coli Expression System
Year 2025,
Volume: 15 Issue: 3, 960 - 970, 15.09.2025
Mustafa Songur
,
Özlem Kaplan
,
Rizvan İmamoğlu
,
İsa Gökçe
Abstract
Human granulocyte colony stimulating factor (hG-CSF) is a hematological growth factor that plays a crucial role in neutrophil production and differentiation. Some foreign biomolecules, especially of human origin, such as hG-CSF, sometimes aggregate because of different factors during expression and create inclusion bodies in Escherichia coli (E. coli). Refolding process is commonly used to recover these very valuable molecules, but still significant amounts of protein remain unusable. Refolding procedures are frequently costly, time-consuming, and not fully efficient. Therefore, the use of molecular chaperones to improve soluble expression of proteins was evaluated in the study. In this context, hG-CSF was co-expressed with five chaperone plasmid systems (pGro7, pG-KJE8, pG-Tf2, pKJE7, pTf16) to ensure the expression of hG-CSF in soluble form. Among these, the pKJE7 plasmid was found to be the most effective in obtaining hG-CSF in soluble form, yielding 92% purity after Ni-NTA affinity chromatography purification. The total yield of hG-CSF obtained was 1.6 mg per 1 L bacterial culture. The biological activity of the soluble hG-CSF was evaluated in human umbilical vein endothelial cells (HUVECs). A 24-hour interaction of hG-CSF with HUVECs resulted in a significant increase in cell viability at all applied doses, demonstrating its bioactivity. As a result, hG-CSF, which previously aggregated as an inclusion body in the E. coli expression system, was correctly folded by co-expression with chaperone proteins were obtained as more efficient and purer.
References
-
Babaeipour, V., Khanchezar, S., Mofid, M. R., and Abbas, M. P. H. (2015). Efficient process development of recombinant human granulocyte colony-stimulating factor (rh-GCSF) production in Escherichia coli. Iranian biomedical journal, 19(2), 102.
-
Babaeipour, V., Khanchezar, S., Mofid, M. R., and Pesaran Hagi Abbas, M. (2015). Efficient process development of recombinant human granulocyte colony-stimulating factor (rh-GCSF) production in Escherichia coli. Iran Biomed J, 19(2), 102-110.
-
Basu, S., Dunn, A., and Ward, A. (2002). G-CSF: function and modes of action (Review). Int J Mol Med, 10(1), 3-10.
-
Bozkurt, Y., Bilgin, S., Erden, S., Turan, İ. F., and Gökçe, İ. (2019). Recombinant human G-CSF production as a protein based drug candidate for hematology and oncology. International Journal of Chemistry and Technology, 3(2), 92-100.
-
Cerchione, C., Nappi, D., and Martinelli, G. (2021). Pegfilgrastim for primary prophylaxis of febrile neutropenia in multiple myeloma. Support Care Cancer.
-
Coward, J. I., Nathavitharana, R., and Popat, S. (2012). True hypoglycaemia secondary to treatment with granulocyte colony stimulating factor (G-CSF) in a diabetic patient with non-small cell lung cancer. Lung Cancer, 75(1), 133-135.
-
Do, B. H., Kang, H. J., Song, J. A., Nguyen, M. T., Park, S., Yoo, J., et al. (2017). Granulocyte colony-stimulating factor (GCSF) fused with Fc Domain produced from E. coli is less effective than Polyethylene Glycol-conjugated GCSF. Sci Rep, 7(1), 6480.
-
Eczacioglu, N., Ulusu, Y., Gokce, İ., and Lakey, J. H. (2022). Investigation of mutations (L41F, F17M, N57E, Y99F_Y134W) effects on the TolAIII-UnaG fluorescence protein's unconjugated bilirubin (UC-BR) binding ability and thermal stability properties. Preparative Biochemistry & Biotechnology, 52(4), 365-374.
-
Francis, D. M., and Page, R. (2010). Strategies to optimize protein expression in E. coli. Curr Protoc Protein Sci, Chapter 5(1), 5.24.21-25.24.29.
-
İncir, İ., and Kaplan, Ö. (2024). Escherichia coli as a versatile cell factory: Advances and challenges in recombinant protein production. Protein Expr Purif, 219, 106463.
-
Jhamb, K., and Sahoo, D. K. (2012). Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour Technol, 123, 135-143.
-
Kaplan, Ö., Gök, M. K., Pekmez, M., Erden Tayhan, S., Özgümüş, S., Gökçe, İ., et al. (2024). Development of recombinant protein-based nanoparticle systems for inducing tumor cell apoptosis: In vitro evaluation of their cytotoxic and apoptotic effects on cancer cells. Journal of Drug Delivery Science and Technology, 95, 105565.
-
Kaplan, Ö., İmamoğlu, R., and Gökçe, İ. (2021). High-Level Production of MMLV Reverse Transcriptase Enzyme in Escherichia Coli. International Journal of Advances in Engineering and Pure Sciences, 33(4), 549-555.
-
Kaplan, Ö., İmamoğlu, R., and Gökçe, İ. (2022). Recombinant Production of E. coli NAD+-dependent DNA ligase as a Target for Antibacterial Drug Discovery. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(1), 19-24.
-
Khosrowabadi, E., Takalloo, Z., Sajedi, R. H., and Khajeh, K. (2018). Improving the soluble expression of aequorin in Escherichia coli using the chaperone-based approach by co-expression with artemin. Preparative Biochemistry and Biotechnology, 48(6), 483-489.
-
Kim, C. K., Lee, C. H., Lee, S. B., and Oh, J. W. (2013). Simplified large-scale refolding, purification, and characterization of recombinant human granulocyte-colony stimulating factor in Escherichia coli. PLoS One, 8(11), e80109.
-
Kubota, N., Orita, T., Hattori, K., Oh-eda, M., Ochi, N., and Yamazaki, T. (1990). Structural characterization of natural and recombinant human granulocyte colony-stimulating factors. J Biochem, 107(3), 486-492.
-
Liu, Z., Zhang, G., Chen, J., Tong, J., Wang, H., Chen, J., et al. (2022). G-CSF promotes the viability and angiogenesis of injured liver via direct effects on the liver cells. Molecular Biology Reports, 49(9), 8715-8725.
-
Mayer, M., and Bukau, B. (2005). Hsp70 chaperones: cellular functions and molecular mechanism. Cellular and molecular life sciences, 62, 670-684.
-
Mei, X., Ouyang, H., Zhang, H., Jia, W., Lu, B., Zhang, J., et al. (2023). Scutellarin suppresses the metastasis of triple-negative breast cancer via targeting TNFα/TNFR2-RUNX1-triggered G-CSF expression in endothelial cells. Biochemical Pharmacology, 217, 115808.
-
Nazari, A., Farajnia, S., Zahri, S., Bagherlou, N., Tanoumand, A., and Rahbarnia, L. (2020). Cytoplasmic Chaperones Enhance Soluble Expression of Anti-EGFR huscFv in Escherichia coli. Iran J Biotechnol, 18(2), e2314.
-
Nomdedeu, M., Lara-Castillo, M. C., Etxabe, A., Cornet-Masana, J. M., Pratcorona, M., Diaz-Beya, M., et al. (2015). Treatment with G-CSF reduces acute myeloid leukemia blast viability in the presence of bone marrow stroma. Cancer Cell Int, 15, 122.
-
Rao, D. V., Narasu, M. L., and Rao, A. K. (2008). A purification method for improving the process yield and quality of recombinant human granulocyte colony-stimulating factor expressed in Escherichia coli and its characterization. Biotechnol Appl Biochem, 50(Pt 2), 77-87.
-
Rao, D. V. K., Narasu, M. L., and Rao, A. K. S. B. (2008). A purification method for improving the process yield and quality of recombinant human granulocyte colony‐stimulating factor expressed in Escherichia coli and its characterization. Biotechnology and applied biochemistry, 50(2), 77-87.
-
Roberts, A. W. (2005). G-CSF: a key regulator of neutrophil production, but that's not all! Growth Factors, 23(1), 33-41.
-
Rosano, G. L., and Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol, 5, 172.
-
Sachsenhauser, V., and Bardwell, J. C. (2018). Directed evolution to improve protein folding in vivo. Curr Opin Struct Biol, 48, 117-123.
-
Saibil, H. (2013). Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol, 14(10), 630-642.
-
Sima, S., Shafiee, F., and Jahanian-Najafabadi, A. (2020). Expression and one step intein-mediated purification of biologically active human G-CSF in Escherichia coli. Mol Biol Rep, 47(4), 2861-2869.
-
Şenol, B., Kaplan, Ö., İmamoğlu, R., and Gökçe, İ. (2021). Recombinant production and characterization of Aspergillus niger prolyl endopeptidase enzyme for gluten-free food production. International Journal of Agriculture Environment and Food Sciences, 5(3), 287-293.
-
Tiwari, K., Shebannavar, S., Kattavarapu, K., Pokalwar, S., Mishra, M. K., and Chauhan, U. K. (2012). Refolding of recombinant human granulocyte colony stimulating factor: effect of cysteine/cystine redox system. Indian J Biochem Biophys, 49(4), 285-288.
-
Trinh, N. T. M., Thuoc, T. L., and Thao, D. T. P. (2021). Production of recombinant human G-CSF from non-classical inclusion bodies in Escherichia coli. Braz J Microbiol, 52(2), 541-546.
-
Vemula, S., Thunuguntla, R., Dedaniya, A., Kokkiligadda, S., Palle, C., and Ronda, S. R. (2015). Improved Production and Characterization of Recombinant Human Granulocyte Colony Stimulating Factor from E. coli under Optimized Downstream Processes. Protein Expr Purif, 108, 62-72.
-
Vemula, S., Thunuguntla, R., Dedaniya, A., Kokkiligadda, S., Palle, C., and Ronda, S. R. (2015). Improved production and characterization of recombinant human granulocyte colony stimulating factor from E. coli under optimized downstream processes. Protein Expression and Purification, 108, 62-72.
-
Von Aulock, S., and Hartung, T. (2002). Potential for immune reconstitution through G-CSF treatment of HIV patients. Arch Immunol Ther Exp (Warsz), 50(2), 111-120.
-
Voulgaridou, G. P., Mantso, T., Chlichlia, K., Panayiotidis, M. I., and Pappa, A. (2013). Efficient E. coli expression strategies for production of soluble human crystallin ALDH3A1. PLoS One, 8(2), e56582.
-
Welte, K. (2014). G-CSF: filgrastim, lenograstim and biosimilars. Expert Opin Biol Ther, 14(7), 983-993.
-
Yan, X., Hu, S., Guan, Y. X., and Yao, S. J. (2012). Coexpression of chaperonin GroEL/GroES markedly enhanced soluble and functional expression of recombinant human interferon-gamma in Escherichia coli. Appl Microbiol Biotechnol, 93(3), 1065-1074.
Escherichia coli İfade Sisteminde İnsan Granülosit Koloni Uyarıcı Faktörün (hG-CSF) Çözünür İfadesi
Year 2025,
Volume: 15 Issue: 3, 960 - 970, 15.09.2025
Mustafa Songur
,
Özlem Kaplan
,
Rizvan İmamoğlu
,
İsa Gökçe
Abstract
İnsan granülosit koloni uyarıcı faktör (hG-CSF), nötrofil üretimi ve farklılaşmasında çok önemli bir rol oynayan hematolojik bir büyüme faktörüdür. hG-CSF gibi özellikle insan kökenli bazı yabancı biyomoleküller bazen ekspresyon sırasında farklı faktörler nedeniyle bir araya gelir ve Escherichia coli'de (E. coli) inklüzyon cisimcikleri oluşturur. Bu çok değerli molekülleri geri kazanmak için yeniden katlama işlemi yaygın olarak kullanılır, ancak yine de önemli miktarda protein kullanılamaz durumda kalır. Yeniden katlama prosedürleri sıklıkla maliyetlidir, zaman alıcıdır ve tam olarak verimli değildir. Bu nedenle çalışmada proteinlerin çözünür ifadesini geliştirmek için moleküler şaperonların kullanımı değerlendirildi. Bu bağlamda, hG-CSF'nin çözünür formda ekspresyonunu sağlamak için hG-CSF, beş şaperon plazmit sistemi (pGro7, pG-KJE8, pG-Tf2, pKJE7, pTf16) ile birlikte eksprese edildi. Yapılan deneyler sonucunda, pKJE7 plazmitinin hG-CSF’nin çözünür formda elde edilmesinde en etkili sistem olduğu belirlenmiş ve Ni-NTA afinite kromatografisi ile %92 saflıkta saflaştırılmıştır. Elde edilen hG-CSF'nin toplam verimi, 1 L'lik bakteri kültüründen 1,6 mg olarak hesaplanmıştır. Çözünür formdaki hG-CSF’nin biyolojik aktivitesi, insan göbek kordonu endotel hücreleri (HUVECs) üzerinde değerlendirilmiş ve 24 saatlik etkileşim sonucunda, tüm uygulanan dozlarda hücre canlılığında anlamlı bir artış sağladığı gözlemlenmiştir. Sonuç olarak daha önce E. coli ekspresyon sisteminde inklüzyon cisimciği olarak agregasyona uğrayan hG-CSF'nin şaperon proteinleri ile ekspresyonu yapılarak doğru bir şekilde katlanmasıyla daha verimli ve daha saf bir şekilde elde edildi.
Supporting Institution
Tokat Gaziosmanpaşa University
Thanks
The study was funded by Tokat Gaziosmanpaşa University, Foundation of Scientific Research Projects (Project number: 2020/67).
References
-
Babaeipour, V., Khanchezar, S., Mofid, M. R., and Abbas, M. P. H. (2015). Efficient process development of recombinant human granulocyte colony-stimulating factor (rh-GCSF) production in Escherichia coli. Iranian biomedical journal, 19(2), 102.
-
Babaeipour, V., Khanchezar, S., Mofid, M. R., and Pesaran Hagi Abbas, M. (2015). Efficient process development of recombinant human granulocyte colony-stimulating factor (rh-GCSF) production in Escherichia coli. Iran Biomed J, 19(2), 102-110.
-
Basu, S., Dunn, A., and Ward, A. (2002). G-CSF: function and modes of action (Review). Int J Mol Med, 10(1), 3-10.
-
Bozkurt, Y., Bilgin, S., Erden, S., Turan, İ. F., and Gökçe, İ. (2019). Recombinant human G-CSF production as a protein based drug candidate for hematology and oncology. International Journal of Chemistry and Technology, 3(2), 92-100.
-
Cerchione, C., Nappi, D., and Martinelli, G. (2021). Pegfilgrastim for primary prophylaxis of febrile neutropenia in multiple myeloma. Support Care Cancer.
-
Coward, J. I., Nathavitharana, R., and Popat, S. (2012). True hypoglycaemia secondary to treatment with granulocyte colony stimulating factor (G-CSF) in a diabetic patient with non-small cell lung cancer. Lung Cancer, 75(1), 133-135.
-
Do, B. H., Kang, H. J., Song, J. A., Nguyen, M. T., Park, S., Yoo, J., et al. (2017). Granulocyte colony-stimulating factor (GCSF) fused with Fc Domain produced from E. coli is less effective than Polyethylene Glycol-conjugated GCSF. Sci Rep, 7(1), 6480.
-
Eczacioglu, N., Ulusu, Y., Gokce, İ., and Lakey, J. H. (2022). Investigation of mutations (L41F, F17M, N57E, Y99F_Y134W) effects on the TolAIII-UnaG fluorescence protein's unconjugated bilirubin (UC-BR) binding ability and thermal stability properties. Preparative Biochemistry & Biotechnology, 52(4), 365-374.
-
Francis, D. M., and Page, R. (2010). Strategies to optimize protein expression in E. coli. Curr Protoc Protein Sci, Chapter 5(1), 5.24.21-25.24.29.
-
İncir, İ., and Kaplan, Ö. (2024). Escherichia coli as a versatile cell factory: Advances and challenges in recombinant protein production. Protein Expr Purif, 219, 106463.
-
Jhamb, K., and Sahoo, D. K. (2012). Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour Technol, 123, 135-143.
-
Kaplan, Ö., Gök, M. K., Pekmez, M., Erden Tayhan, S., Özgümüş, S., Gökçe, İ., et al. (2024). Development of recombinant protein-based nanoparticle systems for inducing tumor cell apoptosis: In vitro evaluation of their cytotoxic and apoptotic effects on cancer cells. Journal of Drug Delivery Science and Technology, 95, 105565.
-
Kaplan, Ö., İmamoğlu, R., and Gökçe, İ. (2021). High-Level Production of MMLV Reverse Transcriptase Enzyme in Escherichia Coli. International Journal of Advances in Engineering and Pure Sciences, 33(4), 549-555.
-
Kaplan, Ö., İmamoğlu, R., and Gökçe, İ. (2022). Recombinant Production of E. coli NAD+-dependent DNA ligase as a Target for Antibacterial Drug Discovery. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(1), 19-24.
-
Khosrowabadi, E., Takalloo, Z., Sajedi, R. H., and Khajeh, K. (2018). Improving the soluble expression of aequorin in Escherichia coli using the chaperone-based approach by co-expression with artemin. Preparative Biochemistry and Biotechnology, 48(6), 483-489.
-
Kim, C. K., Lee, C. H., Lee, S. B., and Oh, J. W. (2013). Simplified large-scale refolding, purification, and characterization of recombinant human granulocyte-colony stimulating factor in Escherichia coli. PLoS One, 8(11), e80109.
-
Kubota, N., Orita, T., Hattori, K., Oh-eda, M., Ochi, N., and Yamazaki, T. (1990). Structural characterization of natural and recombinant human granulocyte colony-stimulating factors. J Biochem, 107(3), 486-492.
-
Liu, Z., Zhang, G., Chen, J., Tong, J., Wang, H., Chen, J., et al. (2022). G-CSF promotes the viability and angiogenesis of injured liver via direct effects on the liver cells. Molecular Biology Reports, 49(9), 8715-8725.
-
Mayer, M., and Bukau, B. (2005). Hsp70 chaperones: cellular functions and molecular mechanism. Cellular and molecular life sciences, 62, 670-684.
-
Mei, X., Ouyang, H., Zhang, H., Jia, W., Lu, B., Zhang, J., et al. (2023). Scutellarin suppresses the metastasis of triple-negative breast cancer via targeting TNFα/TNFR2-RUNX1-triggered G-CSF expression in endothelial cells. Biochemical Pharmacology, 217, 115808.
-
Nazari, A., Farajnia, S., Zahri, S., Bagherlou, N., Tanoumand, A., and Rahbarnia, L. (2020). Cytoplasmic Chaperones Enhance Soluble Expression of Anti-EGFR huscFv in Escherichia coli. Iran J Biotechnol, 18(2), e2314.
-
Nomdedeu, M., Lara-Castillo, M. C., Etxabe, A., Cornet-Masana, J. M., Pratcorona, M., Diaz-Beya, M., et al. (2015). Treatment with G-CSF reduces acute myeloid leukemia blast viability in the presence of bone marrow stroma. Cancer Cell Int, 15, 122.
-
Rao, D. V., Narasu, M. L., and Rao, A. K. (2008). A purification method for improving the process yield and quality of recombinant human granulocyte colony-stimulating factor expressed in Escherichia coli and its characterization. Biotechnol Appl Biochem, 50(Pt 2), 77-87.
-
Rao, D. V. K., Narasu, M. L., and Rao, A. K. S. B. (2008). A purification method for improving the process yield and quality of recombinant human granulocyte colony‐stimulating factor expressed in Escherichia coli and its characterization. Biotechnology and applied biochemistry, 50(2), 77-87.
-
Roberts, A. W. (2005). G-CSF: a key regulator of neutrophil production, but that's not all! Growth Factors, 23(1), 33-41.
-
Rosano, G. L., and Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol, 5, 172.
-
Sachsenhauser, V., and Bardwell, J. C. (2018). Directed evolution to improve protein folding in vivo. Curr Opin Struct Biol, 48, 117-123.
-
Saibil, H. (2013). Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol, 14(10), 630-642.
-
Sima, S., Shafiee, F., and Jahanian-Najafabadi, A. (2020). Expression and one step intein-mediated purification of biologically active human G-CSF in Escherichia coli. Mol Biol Rep, 47(4), 2861-2869.
-
Şenol, B., Kaplan, Ö., İmamoğlu, R., and Gökçe, İ. (2021). Recombinant production and characterization of Aspergillus niger prolyl endopeptidase enzyme for gluten-free food production. International Journal of Agriculture Environment and Food Sciences, 5(3), 287-293.
-
Tiwari, K., Shebannavar, S., Kattavarapu, K., Pokalwar, S., Mishra, M. K., and Chauhan, U. K. (2012). Refolding of recombinant human granulocyte colony stimulating factor: effect of cysteine/cystine redox system. Indian J Biochem Biophys, 49(4), 285-288.
-
Trinh, N. T. M., Thuoc, T. L., and Thao, D. T. P. (2021). Production of recombinant human G-CSF from non-classical inclusion bodies in Escherichia coli. Braz J Microbiol, 52(2), 541-546.
-
Vemula, S., Thunuguntla, R., Dedaniya, A., Kokkiligadda, S., Palle, C., and Ronda, S. R. (2015). Improved Production and Characterization of Recombinant Human Granulocyte Colony Stimulating Factor from E. coli under Optimized Downstream Processes. Protein Expr Purif, 108, 62-72.
-
Vemula, S., Thunuguntla, R., Dedaniya, A., Kokkiligadda, S., Palle, C., and Ronda, S. R. (2015). Improved production and characterization of recombinant human granulocyte colony stimulating factor from E. coli under optimized downstream processes. Protein Expression and Purification, 108, 62-72.
-
Von Aulock, S., and Hartung, T. (2002). Potential for immune reconstitution through G-CSF treatment of HIV patients. Arch Immunol Ther Exp (Warsz), 50(2), 111-120.
-
Voulgaridou, G. P., Mantso, T., Chlichlia, K., Panayiotidis, M. I., and Pappa, A. (2013). Efficient E. coli expression strategies for production of soluble human crystallin ALDH3A1. PLoS One, 8(2), e56582.
-
Welte, K. (2014). G-CSF: filgrastim, lenograstim and biosimilars. Expert Opin Biol Ther, 14(7), 983-993.
-
Yan, X., Hu, S., Guan, Y. X., and Yao, S. J. (2012). Coexpression of chaperonin GroEL/GroES markedly enhanced soluble and functional expression of recombinant human interferon-gamma in Escherichia coli. Appl Microbiol Biotechnol, 93(3), 1065-1074.