Research Article
BibTex RIS Cite

Phytochemical and Antioxidant Characterization of Centaurea macrocephala Willd.: With Notes on Chemotaxonomic Relevance

Year 2025, Volume: 15 Issue: 3, 1196 - 1219, 15.09.2025
https://doi.org/10.31466/kfbd.1641998

Abstract

Centaurea macrocephala Willd. (Asteraceae) is a perennial herbaceous plant that has been relatively understudied in terms of its phytochemical composition and chemotaxonomic classification. Various Centaurea species are widely recognized for their medicinal properties. However, the phenolic composition, antioxidant activity, and volatile profile of C. macrocephala remain largely unexplored. This study aims to comprehensively evaluate the phytochemical profile and antioxidant properties of C. macrocephala, focusing on its flowers, leaves, and stems. The phenolic composition was determined using High-Performance Liquid Chromatography (HPLC), while antioxidant activity was assessed through Ferric Reducing Antioxidant Power (FRAP) and Copper Reducing Antioxidant Capacity (CUPRAC) assays. Additionally, volatile compounds were analyzed using Gas Chromatography-Mass Spectrometry coupled with Solid-Phase Microextraction (GC-MS-SPME). The leaves showed the highest levels of total phenolic and flavonoid compounds, which may explain the stronger antioxidant responses observed in FRAP and CUPRAC results. HPLC analysis identified chlorogenic acid, rutin, and quercetin derivatives as the dominant phenolic compounds. GC-MS-SPME analysis revealed that the volatile composition of C. macrocephala is predominantly characterized by aldehydes and ketones, distinguishing it from other Centaurea species, which are typically rich in sesquiterpenes.

Ethical Statement

The author declares that this study complies with Research and Publication Ethics.

Supporting Institution

No financial support was received for this study.

Thanks

The author expresses sincere gratitude to Dr. Abidin GUMRUKCUOGLU for generously sharing his expertise in HPLC and GC-MS-SPME analyses, which significantly contributed to the successful completion of this study.

References

  • Apak, R., Güçlü, K., Özyürek, M., and Çelik, S. E., (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica acta, 160(4), 413-419.
  • Aktumsek, A., Zengin, G., Guler, G. O., Cakmak, Y. S., and Duran, A., (2013). Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea species. Food and Chemical Toxicology, 55, 290-296.
  • Arrigoni, O., and De Tullio, M. C., (2000). The role of ascorbic acid in cell metabolism: between chemistry and biology. Journal of Plant Physiology, 157(5), 481-488.
  • Baykan Erel, S., Karaalp, C., Bedir, E., Kaehlig, H., Glasl, S., Khan, S., and Krenn, L., (2011). Secondary metabolites of Centaurea calolepis and evaluation of cnicin for anti-inflammatory, antioxidant, and cytotoxic activities. Pharmaceutical Biology, 49(8), 840-849.
  • Baytop, T., (1999). Therapy with medicinal plants in Turkey (Past and Present). Istanbul: Istanbul University Publications.
  • Badaoui, M. I., Kilic, O., and Bagci, E., (2024). Chemical constituents of Centaurea dissecta Ten. and sesquiterpenes chemotaxonomic significance. Biochemical Systematics and Ecology, 114, 104808.
  • Benzie, I. F., and Strain, J. J., (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  • Boerjan, W., Ralph, J., and Baucher, M., (2003). Lignin biosynthesis. Annual Review of Plant Biology, 54, 519–546.
  • Clifford, M. N., (1999). Chlorogenic acids and other cinnamates—nature, occurrence, and dietary burden. Journal of the Science of Food and Agriculture, 79(3), 362–372.
  • De Oliveira, A. P., Brighente, I. M., and Pizzolatti, M. G., (2017). Flavonoids as chemotaxonomic markers in Asteraceae. Phytochemistry, 140, 1–14.
  • Del Valle, J. C., Buide, M. L., Whittall, J. B., Valladares, F., and Narbona, E., (2020). UV radiation increases phenolic compound protection but decreases reproduction in Silene littorea. PloS one, 15(6), e0231611.
  • Ekim, T., Koyuncu, M., Vural, M., Duman, H., Aytaç, Z., and Adıgüzel, N., (2012). Centaurea L. In T. Ekim (Ed.), Türkiye Bitkileri Listesi (Damarlı Bitkiler) (pp. 127-140). İstanbul: Nezahat Gökyiğit Botanik Bahçesi Yayınları ve Flora Araştırmaları Derneği.
  • Emus-Medina, A., Contreras-Angulo, L. A., Ambriz-Perez, D. L., Vazquez-Olivo, G., and Heredia, J. B., (2023). UV light stress induces phenolic compounds in plants. In R. Lone, S. Khan, and A. Mohammed Al-Sadi (Eds.), Plant phenolics in abiotic stress management (pp. 369–389). Springer, Singapore.
  • Grace, S. C., and Logan, B. A., (2000). Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philosophical Transactions of the Royal Society B: Biological Sciences, 355(1402), 1499–1510.
  • Giorgi, A., Madeo, M., Speranza, G., and Cocucci, M., (2010). Influence of environmental factors on the composition of phenolic antioxidants of Achillea collina Becker ex Rchb. Natural Product Research, 24(14), 1546-1559.
  • Harborne, J. B., (1993). Introduction to Ecological Biochemistry (4th ed.). Academic Press.
  • Hierro, J. L., and Callaway, R. M., (2021). The ecological importance of allelopathy. Annual Review of Ecology, Evolution, and Systematics, 52(1), 25-45.
  • Kabtni, S., Sdouga, D., Rebey, I. B., Save, M., Trifi-Farah, N., Fauconnier, M. L., and Marghali, S., (2020). Influence of climate variation on phenolic composition and antioxidant capacity of Medicago minima populations. Scientific Reports, 10, 8293.
  • Kumar, S., Abedin, M. M., Singh, A. K., and Das, S., (2020). Role of phenolic compounds in plant-defensive mechanisms. In R. Lone, R. Shuab, and A. Kamili (Eds.), Plant phenolics in sustainable agriculture (pp. 509–530). Springer, Singapore.
  • Łazarski, R., and Pliszko, A., (2022). First spontaneous occurrence of Centaurea macrocephala in Poland. BioInvasions Records, 11(2), 330-337.
  • Litvinenko, V. I., and Bubenchikova, V. A., (1988). Flavonoid aglycones (quercetin, kaempferol, isorhamnetin, apigenin, luteolin, hispidulin) and their glycosides, and caffeic, chlorogenic, neochlorogenic, and isochlorogenic acids have been isolated from Centaurea cyanus L. Chemistry of Natural Compounds, 24, 792-795.
  • Mekky, A. E., Saied, E., Abdelmouty, E. S., Haggag, M. I., Khedr, M., Khalel, A. F., Al-Habibi, M. M., Metwally, S. A., Askary, A., E., Mohammad, A. M., Alshehri, W. A., Sharahili, A. I., Khairy, N. M., Abdelaziz, A. E. M., and Mahmoud, N. N., (2024). Phytochemical Analysis of Centaurea calcitrapa L. Aerial Flowering Parts Serial Solvent Extracts and Its Antibacterial and Antioxidant Activities. Life, 14(7), 900.
  • Mishio, T., Sugimoto, N., and Tanaka, K., (2014). Anthocyanins and other flavonoids as flower pigments from eleven Centaurea species. Journal of Natural Products, 77(6), 1215-1223.
  • Özyürek, M., Güçlü, K., Tütem, E., Başkan, K. S., Erçağ, E., Çelik, S. E., and Apak, R., (2011). Comprehensive review of CUPRAC methodology. Analytical Methods, 3(11), 2439-2453.
  • Pawliszyn, J., (1997). Solid Phase Microextraction: Theory and Practice. Wiley-VCH.
  • Petropoulos, A., Fernandes, S., Dias, Â., Pereira, M. I., Calhelha, C., Chrysargyris, R. C., Tzortzakis, A., Ivanov, N., Sokovic, M., Barros, M. D., and Ferreira, I. C. F. R., (2020). Chemical composition and plant growth of Centaurea raphanina subsp. mixta plants cultivated under saline conditions. Molecules, 25(9), 2204.
  • Pichersky, E., and Gershenzon, J., (2002). The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current Opinion in Plant Biology, 5(3), 237-243.
  • Prior, R. L., Wu, X., and Schaich, K., (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302.
  • Özel, Ç. A., and Maesaroh, S., (2023). An outlook of the cultivation, medicinal properties, and tissue culture techniques of Centaurea in Türkiye: A Comprehensive Review. MAS Journal of Applied Sciences, 8(2), 362-373.
  • Sarker, S. D., Kumarasamy, Y., Shoeb, M., Celik, S., Eucel, E., Middleton, M., and Nahar, L., (2005). Antibacterial and antioxidant activities of three Turkish species of the genus Centaurea. Advances in Traditional Medicine, 5(3), 246-250.
  • Sarker, S. D., Latif, Z., and Gray, A. I., (1997). Natural products isolation. Methods in Biotechnology, 4, 1-25.
  • Sezik, E., Yeşilada, E., Honda, G., Takaishi, Y., Takeda, Y., and Tanaka, T., (2001). Traditional medicine in Turkey X. Folk medicine in central Anatolia. Journal of ethnopharmacology, 75(2-3), 95-115.
  • Shad, M. A., Shahid, M., and Saeed, H., (2020). Effects of environmental stress on antioxidant properties and phenolic contents in different plant parts. Agronomy, 10(1209).
  • Shoeb, M., (2005). Cytotoxic compounds from the genus Centaurea (Doctoral dissertation). Retrieved from https://openair.rgu.ac.uk/
  • Shoeb, M., MacManus, S. M., Kong-Thoo-Lin, P., Celik, S., Jaspars, M., Nahar, L., and Sarker, S. D., (2007). Bioactivity of the extracts and isolation of lignans and a sesquiterpene from the aerial parts of Centaurea pamphylica (Asteraceae). DARU Journal of Pharmaceutical Sciences, 15(3), 118-122.
  • Shomali, A., Das, S., Arif, N., Sarraf, M., Zahra, N., Yadav, V., Aliniaeifard, S., Chauhan, D. K., and Hasanuzzaman, M., (2022). Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance. Plants, 11(3158).
  • Singleton, V. L., Orthofer, R., and Lamuela-Raventós, R. M., (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In L. Packer (Ed.), Methods in Enzymology (Vol. 299, pp. 152-178). San Diego, CA: Academic Press.
  • Stanković, M. S., Zia-Ul-Haq, M., Bojović, B. M., and Topuzović, M., (2014). Total phenolics, flavonoid content, and antioxidant power of Cornus mas L. Bulgarian Journal of Agricultural Science, 20(2), 358–363.
  • Wagenitz, G., (1975). Centaurea L. In P. H. Davis (Ed.), Flora of Turkey and the East Aegean Islands (Vol. 5, pp. 465–585). Edinburgh University Press.
  • Wink, M., (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64(1), 3-19.
  • Zengin, G., Aktumsek, A., Guler, G. O., Cakmak, Y. S., and Yildiztugay, E., (2011). Antioxidant properties of methanolic extract and fatty acid composition of Centaurea urvillei DC. subsp. hayekiana Wagenitz. Records of Natural Products, 5(2).
  • Zhang, Z., Yang, M. J., and Pawliszyn, J., (1994). Solid-phase microextraction. A solvent-free alternative for sample preparation. Analytical Chemistry, 66(17), 844A–853A.

Centaurea macrocephala Willd.'in Fitokimyasal ve Antioksidan Karakterizasyonu: Kemotaksonomik Öneme Dair Notlarla

Year 2025, Volume: 15 Issue: 3, 1196 - 1219, 15.09.2025
https://doi.org/10.31466/kfbd.1641998

Abstract

Centaurea macrocephala Willd. (Asteraceae), fitokimyasal bileşimi ve kemotaksonomik sınıflandırması açısından nispeten az çalışılmış, çok yıllık otsu bir bitkidir. Çeşitli Centaurea türleri tıbbi özellikleriyle geniş ölçüde tanınmaktadır. Ancak C. macrocephala’nın fenolik bileşimi, antioksidan aktivitesi ve uçucu bileşen profili büyük ölçüde araştırılmamıştır. Bu çalışma, C. macrocephala'nın çiçek, yaprak ve gövde kısımlarına odaklanarak fitokimyasal profilini ve antioksidan özelliklerini kapsamlı bir şekilde değerlendirmeyi amaçlamaktadır. Fenolik bileşim, Yüksek Performanslı Sıvı Kromatografi (HPLC) yöntemiyle belirlenirken, antioksidan aktivite ise Demir İyonu İndirgeme Antioksidan Gücü (FRAP) ve Bakır İyonu İndirgeme Kapasitesi (CUPRAC) analizleriyle ölçülmüştür. Ayrıca, uçucu bileşenler Katı Faz Mikroekstraksiyon ile Eşleştirilmiş Gaz Kromatografi-Kütle Spektrometrisi (GC-MS-SPME) yöntemi kullanılarak analiz edilmiştir. Yapraklar, toplam fenolik ve flavonoid bileşiklerin en yüksek düzeylerini göstermiştir; bu durum, FRAP ve CUPRAC sonuçlarında gözlemlenen daha güçlü antioksidan tepkileri açıklayabilir. HPLC analizi, klorojenik asit, rutin ve kuersetin türevlerinin baskın fenolik bileşikler olduğunu ortaya koymuştur. GC-MS-SPME analizi, C. macrocephala'nın uçucu bileşik profilinin esas olarak aldehitler ve ketonlarla karakterize edildiğini göstermiştir. Bu durum, tipik olarak sekiterpenler açısından zengin olan diğer Centaurea türlerinden farklılık göstermektedir.

Ethical Statement

Yazar, bu çalışmanın Araştırma ve Yayın Etiğine uygun olduğunu beyan eder

Supporting Institution

Bu çalışma için herhangi bir finansal destek alınmamıştır.

Thanks

Yazar, HPLC ve GC-MS-SPME analizlerindeki uzmanlığını cömertçe paylaşarak bu çalışmanın başarıyla tamamlanmasına önemli katkılarda bulunan Dr. Abidin GÜMRÜKÇÜOĞLU'na içten şükranlarını sunar.

References

  • Apak, R., Güçlü, K., Özyürek, M., and Çelik, S. E., (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica acta, 160(4), 413-419.
  • Aktumsek, A., Zengin, G., Guler, G. O., Cakmak, Y. S., and Duran, A., (2013). Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea species. Food and Chemical Toxicology, 55, 290-296.
  • Arrigoni, O., and De Tullio, M. C., (2000). The role of ascorbic acid in cell metabolism: between chemistry and biology. Journal of Plant Physiology, 157(5), 481-488.
  • Baykan Erel, S., Karaalp, C., Bedir, E., Kaehlig, H., Glasl, S., Khan, S., and Krenn, L., (2011). Secondary metabolites of Centaurea calolepis and evaluation of cnicin for anti-inflammatory, antioxidant, and cytotoxic activities. Pharmaceutical Biology, 49(8), 840-849.
  • Baytop, T., (1999). Therapy with medicinal plants in Turkey (Past and Present). Istanbul: Istanbul University Publications.
  • Badaoui, M. I., Kilic, O., and Bagci, E., (2024). Chemical constituents of Centaurea dissecta Ten. and sesquiterpenes chemotaxonomic significance. Biochemical Systematics and Ecology, 114, 104808.
  • Benzie, I. F., and Strain, J. J., (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  • Boerjan, W., Ralph, J., and Baucher, M., (2003). Lignin biosynthesis. Annual Review of Plant Biology, 54, 519–546.
  • Clifford, M. N., (1999). Chlorogenic acids and other cinnamates—nature, occurrence, and dietary burden. Journal of the Science of Food and Agriculture, 79(3), 362–372.
  • De Oliveira, A. P., Brighente, I. M., and Pizzolatti, M. G., (2017). Flavonoids as chemotaxonomic markers in Asteraceae. Phytochemistry, 140, 1–14.
  • Del Valle, J. C., Buide, M. L., Whittall, J. B., Valladares, F., and Narbona, E., (2020). UV radiation increases phenolic compound protection but decreases reproduction in Silene littorea. PloS one, 15(6), e0231611.
  • Ekim, T., Koyuncu, M., Vural, M., Duman, H., Aytaç, Z., and Adıgüzel, N., (2012). Centaurea L. In T. Ekim (Ed.), Türkiye Bitkileri Listesi (Damarlı Bitkiler) (pp. 127-140). İstanbul: Nezahat Gökyiğit Botanik Bahçesi Yayınları ve Flora Araştırmaları Derneği.
  • Emus-Medina, A., Contreras-Angulo, L. A., Ambriz-Perez, D. L., Vazquez-Olivo, G., and Heredia, J. B., (2023). UV light stress induces phenolic compounds in plants. In R. Lone, S. Khan, and A. Mohammed Al-Sadi (Eds.), Plant phenolics in abiotic stress management (pp. 369–389). Springer, Singapore.
  • Grace, S. C., and Logan, B. A., (2000). Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philosophical Transactions of the Royal Society B: Biological Sciences, 355(1402), 1499–1510.
  • Giorgi, A., Madeo, M., Speranza, G., and Cocucci, M., (2010). Influence of environmental factors on the composition of phenolic antioxidants of Achillea collina Becker ex Rchb. Natural Product Research, 24(14), 1546-1559.
  • Harborne, J. B., (1993). Introduction to Ecological Biochemistry (4th ed.). Academic Press.
  • Hierro, J. L., and Callaway, R. M., (2021). The ecological importance of allelopathy. Annual Review of Ecology, Evolution, and Systematics, 52(1), 25-45.
  • Kabtni, S., Sdouga, D., Rebey, I. B., Save, M., Trifi-Farah, N., Fauconnier, M. L., and Marghali, S., (2020). Influence of climate variation on phenolic composition and antioxidant capacity of Medicago minima populations. Scientific Reports, 10, 8293.
  • Kumar, S., Abedin, M. M., Singh, A. K., and Das, S., (2020). Role of phenolic compounds in plant-defensive mechanisms. In R. Lone, R. Shuab, and A. Kamili (Eds.), Plant phenolics in sustainable agriculture (pp. 509–530). Springer, Singapore.
  • Łazarski, R., and Pliszko, A., (2022). First spontaneous occurrence of Centaurea macrocephala in Poland. BioInvasions Records, 11(2), 330-337.
  • Litvinenko, V. I., and Bubenchikova, V. A., (1988). Flavonoid aglycones (quercetin, kaempferol, isorhamnetin, apigenin, luteolin, hispidulin) and their glycosides, and caffeic, chlorogenic, neochlorogenic, and isochlorogenic acids have been isolated from Centaurea cyanus L. Chemistry of Natural Compounds, 24, 792-795.
  • Mekky, A. E., Saied, E., Abdelmouty, E. S., Haggag, M. I., Khedr, M., Khalel, A. F., Al-Habibi, M. M., Metwally, S. A., Askary, A., E., Mohammad, A. M., Alshehri, W. A., Sharahili, A. I., Khairy, N. M., Abdelaziz, A. E. M., and Mahmoud, N. N., (2024). Phytochemical Analysis of Centaurea calcitrapa L. Aerial Flowering Parts Serial Solvent Extracts and Its Antibacterial and Antioxidant Activities. Life, 14(7), 900.
  • Mishio, T., Sugimoto, N., and Tanaka, K., (2014). Anthocyanins and other flavonoids as flower pigments from eleven Centaurea species. Journal of Natural Products, 77(6), 1215-1223.
  • Özyürek, M., Güçlü, K., Tütem, E., Başkan, K. S., Erçağ, E., Çelik, S. E., and Apak, R., (2011). Comprehensive review of CUPRAC methodology. Analytical Methods, 3(11), 2439-2453.
  • Pawliszyn, J., (1997). Solid Phase Microextraction: Theory and Practice. Wiley-VCH.
  • Petropoulos, A., Fernandes, S., Dias, Â., Pereira, M. I., Calhelha, C., Chrysargyris, R. C., Tzortzakis, A., Ivanov, N., Sokovic, M., Barros, M. D., and Ferreira, I. C. F. R., (2020). Chemical composition and plant growth of Centaurea raphanina subsp. mixta plants cultivated under saline conditions. Molecules, 25(9), 2204.
  • Pichersky, E., and Gershenzon, J., (2002). The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current Opinion in Plant Biology, 5(3), 237-243.
  • Prior, R. L., Wu, X., and Schaich, K., (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302.
  • Özel, Ç. A., and Maesaroh, S., (2023). An outlook of the cultivation, medicinal properties, and tissue culture techniques of Centaurea in Türkiye: A Comprehensive Review. MAS Journal of Applied Sciences, 8(2), 362-373.
  • Sarker, S. D., Kumarasamy, Y., Shoeb, M., Celik, S., Eucel, E., Middleton, M., and Nahar, L., (2005). Antibacterial and antioxidant activities of three Turkish species of the genus Centaurea. Advances in Traditional Medicine, 5(3), 246-250.
  • Sarker, S. D., Latif, Z., and Gray, A. I., (1997). Natural products isolation. Methods in Biotechnology, 4, 1-25.
  • Sezik, E., Yeşilada, E., Honda, G., Takaishi, Y., Takeda, Y., and Tanaka, T., (2001). Traditional medicine in Turkey X. Folk medicine in central Anatolia. Journal of ethnopharmacology, 75(2-3), 95-115.
  • Shad, M. A., Shahid, M., and Saeed, H., (2020). Effects of environmental stress on antioxidant properties and phenolic contents in different plant parts. Agronomy, 10(1209).
  • Shoeb, M., (2005). Cytotoxic compounds from the genus Centaurea (Doctoral dissertation). Retrieved from https://openair.rgu.ac.uk/
  • Shoeb, M., MacManus, S. M., Kong-Thoo-Lin, P., Celik, S., Jaspars, M., Nahar, L., and Sarker, S. D., (2007). Bioactivity of the extracts and isolation of lignans and a sesquiterpene from the aerial parts of Centaurea pamphylica (Asteraceae). DARU Journal of Pharmaceutical Sciences, 15(3), 118-122.
  • Shomali, A., Das, S., Arif, N., Sarraf, M., Zahra, N., Yadav, V., Aliniaeifard, S., Chauhan, D. K., and Hasanuzzaman, M., (2022). Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance. Plants, 11(3158).
  • Singleton, V. L., Orthofer, R., and Lamuela-Raventós, R. M., (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In L. Packer (Ed.), Methods in Enzymology (Vol. 299, pp. 152-178). San Diego, CA: Academic Press.
  • Stanković, M. S., Zia-Ul-Haq, M., Bojović, B. M., and Topuzović, M., (2014). Total phenolics, flavonoid content, and antioxidant power of Cornus mas L. Bulgarian Journal of Agricultural Science, 20(2), 358–363.
  • Wagenitz, G., (1975). Centaurea L. In P. H. Davis (Ed.), Flora of Turkey and the East Aegean Islands (Vol. 5, pp. 465–585). Edinburgh University Press.
  • Wink, M., (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64(1), 3-19.
  • Zengin, G., Aktumsek, A., Guler, G. O., Cakmak, Y. S., and Yildiztugay, E., (2011). Antioxidant properties of methanolic extract and fatty acid composition of Centaurea urvillei DC. subsp. hayekiana Wagenitz. Records of Natural Products, 5(2).
  • Zhang, Z., Yang, M. J., and Pawliszyn, J., (1994). Solid-phase microextraction. A solvent-free alternative for sample preparation. Analytical Chemistry, 66(17), 844A–853A.
There are 42 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Articles
Authors

Nursen Aksu Kalmuk 0000-0002-3712-4002

Publication Date September 15, 2025
Submission Date February 18, 2025
Acceptance Date August 4, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

APA Aksu Kalmuk, N. (2025). Phytochemical and Antioxidant Characterization of Centaurea macrocephala Willd.: With Notes on Chemotaxonomic Relevance. Karadeniz Fen Bilimleri Dergisi, 15(3), 1196-1219. https://doi.org/10.31466/kfbd.1641998