Türkiye'nin Fosil Yakıt Tüketimine Yönelik Trend Analizine Dayalı Tahmin Modellerinin Geliştirilmesi
Year 2025,
Volume: 15 Issue: 3, 1325 - 1340, 15.09.2025
Nokta Nurani Bektaş
,
İzzet Karakurt
,
Gökhan Aydın
Abstract
Bu çalışmada, 1965'ten 2023'e kadar Türkiye için toplam nüfus ve fosil yakıt tüketimini bağımsız ve bağımlı değişkenler olarak kullanan trend analizine dayalı tahmin modelleri geliştirilmiştir. Daha sonra, geliştirilen modellerin determinasyon katsayısı (R2), F ve t testleri ve tahmin edilen ile gerçek verilerin karşılaştırılması gibi çeşitli istatistiksel yaklaşımlarla doğrulaması yapılmıştır. Ayrıca, geliştirilen modellerin tahmin doğrulukları, ortalama mutlak sapma (MAD), ortalama karesel hata (MSE), ortalama karekök hata (RMSE), %95'te belirsizlik (U95), bağıl ortalama karekök hata (RRMSE), maksimum mutlak bağıl hata (erMAX) ve ortalama mutlak yüzdelik hata (MAPE) göstergeleri kullanılarak ölçülmüştür. Ek olarak, önerilen modeller ile Türkiye'nin fosil yakıt tüketimi 2025'ten 2035'e kadar tahmin edilmiştir. Sonuçlar, Türkiye'nin gelecekteki fosil yakıt tüketiminin önerilen modellerden biri ile başarılı bir şekilde tahmin edilebileceğini ortaya koymuştur. Dahası, tahmin sonuçları Türkiye'nin gelecekteki fosil yakıt tüketiminde önemli artışların beklendiğini açıkça göstermiştir.
References
-
Aydin, G., Kaya, S., and Karakurt, I. (2015, April). Modeling of energy consumption based on population: The case of Turkey. In M. Kılış (Ed.), Proceedings of 24th International Mining Congress and Exhibition of Turkey (pp. 88 – 92). Antalya, Türkiye.
-
Aydin, G. (2015). Forecasting natural gas production using various regression models. Petroleum Science and Technology, 33, 1486–1492. http://doi.org/10.1080/10916466.2015.1076842.
-
Aydin, G. (2014). Production modeling in the oil and natural gas industry: An application of trend analysis. Petroleum Science and Technology, 32(5), 555-564. https://doi.org/10.1080/10916466.2013.825271.
-
Azadeh, A., Saberi, M., Asadzadeh, S. M., and Khakestani, M. (2011). A hybrid fuzzy mathematical programming-design of experiment framework for improvement of energy consumption estimation with small data sets and uncertainty: The cases of USA, Canada, Singapore, Pakistan and Iran. Energy, 36(12), 6981-6992. https://doi.org/10.1016/j.energy.2011.07.016.
-
Bianco, V., Manca, O., Nardini, S., and Mine, A. A. (2010). Analysis and forecasting of nonresidential electricity consumption in Romania. Applied Energy, 87(11), 3584–3590. https://doi.org/10.1016/j.apenergy.2010.05.018.
-
Bianco, V., Scarpa, F., and Tagliafico, L. A. (2014). Analysis and future outlook of natural gas consumption in the Italian residential sector. Energy Conversion and Management, 87, 754–764. https://doi.org/10.1016/j.enconman.2014.07.081.
-
Byrne, R. F. (2012). Beyond traditional time-series: Using demand sensing to improve forecasts in volatile times. Journal of Business Forecasting, 31(2), 13-20.
-
Celiker, M., Yukseler, U., and Dursun, U. F. (2021). Trend analyses for discharge-recharge of Tacin karstic spring (Kayseri, Turkey). Journal of African Earth Sciences, 184, 104344. https://doi.org/10.1016/j.jafrearsci.2021.104344.
-
Chang, C. L., and Fang, M. (2022). Renewable energy-led growth hypothesis: New insights from BRICS and N-11 economies. Renewable Energy, 188, 788-800. https://doi.org/10.1016/j.renene.2022.02.052.
-
Demircioglu, M., and Esiyok, S. (2022). Energy consumption forecast of Turkey using artificial neural networks from a sustainability perspective. International Journal of Sustainable Energy, 41(8), 1127–1141. https://doi.org/10.1080/14786451.2022.2026357.
-
Despotovic, M., Nedic, V., Despotovic, D., and Cvetanovic, S. (2015). Review and statistical analysis of different global solar radiation sunshine models. Renewable and Sustainable Energy Reviews, 52, 1869–1880. http://dx.doi.org/10.1016/j.rser.2015.08.035.
-
Ehigiamusoe, K. U., and Dogan, E. (2022). The role of interaction effect between renewable energy consumption and real income in carbon emissions: Evidence from low-income countries. Renewable and Sustainable Energy Reviews, 154, 111883. https://doi.org/10.1016/j.rser.2021.111883
-
EI. (2024). Statistical review of world energy 2024. Retrieved from https://www.energyinst.org/statistical-review. Accessed on 15.03.2025.
-
Erba, S., and Beydogan, H. O. (2017). Attitudes of educators towards educational research. Kırsehir Journal of the Faculty of Education, 18(3), 246-260. https://dergipark.org.tr/tr/download/article-file/1487175.
-
Fareed, Z., and Pata, U. K. (2022). Renewable, non-renewable energy consumption and income in top ten renewable energy-consuming countries: Advanced Fourier based panel data approaches. Renewable Energy, 194, 805-821. https://doi.org/10.1016/j.renene.2022.05.156.
-
Gazder, U. (2016, December). Energy consumption trends in energy scarce and rich countries: comparative study for Pakistan and Saudi Arabia. In eds. W. E. Alnaser and A. A. Sayigh, World Renewable Energy Congress-17 (pp. 1 – 8), paper no. 07002. https://doi.org/10.1051/e3sconf/20172307002.
-
Kankal, M., Akpinar, A., Komurcu, I. M., and Ozsahin, S. T. (2011). Modeling and forecasting of Turkey’s energy consumption using socio-economic and demographic variables. Applied Energy, 88, 1927–1939. https://doi.org/10.1016/j.apenergy.2010.12.005.
-
Karakurt, I. (2020). Energy consumption modelling using socio-economic indicators: Evidence from the BRICS-T countries. Journal of the Southern African Institute of Mining and Metallurgy, 120(7), 425-43. https://doi.org/10.17159/2411-9717/901/2020.
-
Karakurt, I. (2021). Modelling and forecasting the oil consumptions of the BRICS-T countries. Energy, 119720. https://doi.org/10.1016/j.energy.2020.119720.
-
Kartal, M. T. (2022). The role of consumption of energy, fossil sources, nuclear energy, and renewable energy on environmental degradation in top-five carbon producing countries. Renewable Energy, 184, 871-880. https://doi.org/10.1016/j.renene.2021.12.022.
-
Kavaklioglu, K., Ceylan, H., Ozturk, K. H. and Canyurt, E. O. (2009). Modeling and prediction of Turkey’s electricity consumption using artificial neural networks. Energy Conversion and Management, 50, 2719–2727. https://doi.org/10.1016/j.enconman.2009.06.016.
-
Khan, A. M., and Osinska, M. (2021). How to predict energy consumption in BRICS countries?. Energies, 14, 2749. https://doi.org/10.3390/en14102749.
-
Kim, S., and Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), 669–679. https://doi.org/10.1016/j.ijforecast.2015.12.003.
-
Kok, B., and Benli, H. (2017). Energy diversity and nuclear energy for sustainable development in Turkey. Renewable Energy, 111, 870-877. https://doi.org/10.1016/j.renene.2017.05.001.
-
Kone, C. A., and Buke, T. (2010). Forecasting of CO2 emissions from fuel combustion using trend analysis. Renewable and Sustainable Energy Reviews, 14, 2906–2915. https://doi.org/10.1016/j.rser.2010.06.006.
-
Konuk, F., Zeren, F., Akpinar, S., and Yıldız, S. (2021). Biomass energy consumption and economic growth: Further evidence from NEXT-11 countries. Energy Reports, 7, 4825–4832. https://doi.org/10.1016/j.egyr.2021.07.070.
-
Kunvitaya, A., and Dhakal, S. (2017). Household energy requirements in two medium-sized Thai cities with different population densities. Environment and Urbanization, 267-282. https://doi.org/10.1177/0956247816659.
-
Lewis, C.D. (1982). International and business forecasting methods. Butterworths, London: Butterworth Scientific.
-
Li, M. F., Tang, X. P., Wu, W., and Liu, H. B. (2013). General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Conversion and Management, 70, 139–48. http://dx.doi.org/10.1016/j.enconman.2013.03.004.
-
Lorente, D. B., Driha, O. M., Halkos, G., and Mishra, S. (2022). Influence of growth and urbanization on CO2 emissions: The moderating effect of foreign direct investment on energy use in BRICS. Sustainable Development, 30, 227–240. https://doi.org/10.1002/sd.2240.
-
MEN. (2024). Ministry of Energy and Natural Resources of Türkiye. Retrieved from https://enerji.gov.tr/bilgi-merkezi-enerji-dogalgaz. Accessed on 17.03.2025.
-
Mensah, I. A., Sun, M., Gao, C., Omari-Sasu, A. Y., Zhu, D., Ampimah, B. C., and Quarcoo, A. (2019). Analysis on the nexus of economic growth, fossil fuel energy consumption, CO2 emissions and oil price in Africa based on a PMG panel ARDL approach. Journal of Cleaner Production, 228, 161-174. https://doi.org/10.1016/j.jclepro.2019.04.281.
-
Ohlan, R. (2015). The impact of population density, energy consumption, economic growth and trade openness on CO2 emissions in India. Natural Hazards, 79(2), 1409–1428. https://doi.org/10.1007/s11069-015-1898-0
-
Otsuka, A. (2018). Population agglomeration and residential energy consumption: Evidence from Japan. Sustainability, 10(2), 469(1-12). https://doi:10.3390/su10020469.
-
Ozdemir, M., Pehlivan, S., and Melikoglu, M. (2024). Estimation of greenhouse gas emissions using linear and logarithmic models: A scenario-based approach for Türkiye’s 2030 vision. Energy Nexus, 13, 100264. https://doi.org/10.1016/j.nexus.2023.100264.
-
Ozturk, S., and Ozturk, F. (2018). Forecasting energy consumption of Turkey by ARIMA model. Journal of Asian Scientific Research, 8(2), 52-60. https://doi.org/10.18488/journal.2.2018.82.52.60.
-
Paiva, H., Afonso, R. J. M., Caldeira, F. M. S. L. A., and Velasquez, E. A. A. (2021). Computational tool for trend analysis and forecast of the COVID-19 pandemic. Appl Soft Computing, 105, 107289. https://doi.org/10.1016/j.asoc.2021.107289.
-
Rahman, M. M. (2020). Exploring the effects of economic growth, population density and international trade on energy consumption and environmental quality in India. International Journal of Energy Sector Management, 14(6), 1177-1203. https://doi.org/10.1108/IJESM-11-2019-0014.
-
Rahman, M. M., Vu, X. B. (2021). Are energy consumption, population density and exports causing environmental damage in China? Autoregressive distributed lag and vector error correction model approaches. Sustainability, 13, 3749. https://doi.org/10.3390/su13073749.
-
Simba, A. H. M., and Oztek, M. F. (2020). Empirical analysis of energy consumption and economic growth in Tanzania: based on Engel and Granger test. Journal of Economics, Finance and Accounting, 7(3), 250-262. http://doi.org/10.17261/Pressacademia.2020.1292.
-
Somoye, O. A., Ozdeser, H., and Seraj, M. (2022). Modeling the determinants of renewable energy consumption in Nigeria: Evidence from Autoregressive Distributed Lagged in error correction approach. Renewable Energy, 190, 606-616. https://doi.org/10.1016/j.renene.2022.03.143.
-
Tabachnick, B. G., and Fidell, L. S. (2013). Using multivariate statistics. Boston, Nobel Akademik Yayıncılık.
-
Terzi, H., and Pata, U. K. (2016). The effect of oil consumption on economic growth in Turkey. Dogus University Journal, 17(2), 225-240. https://dergipark.org.tr/tr/download/article-file/2152173.
-
Tuzemen, O. B., and Tuzemen, S. (2022). The impact of foreign direct investment and biomass energy consumption on pollution in BRICS countries: A panel data analysis. Global Journal of Emerging Market Economies, 14(1), 76–92. https://doi.org/10.1177/09749101211067092.
-
Uma, J., Yun, H., Jeong, C. S., and Heo, J. H. (2011). Factor analysis and multiple regression between topography and precipitation on Jeju Island Korea. Journal of Hydrology, 410, 189–203. https://doi.org/10.1016/j.jhydrol.2011.09.016.
-
UN. (2018). United Nations, Department of Economic and Social Affairs, Population Division, World Urbanization Prospects: The 2018 Revision. Retrieved from https://population.un.org/wup/Download/ (2024, accessed 20 April 2024).
-
Wang, M., Wang, M., and Wu, L. (2022a). Application of a new grey multivariate forecasting model in the forecasting of energy consumption in 7 regions of China. Energy, 243, 123024. https://doi.org/10.1016/j.energy.2021.123024.
-
Wang, Z., Pham, T. L. H., Sun, K., Wang, B., Bui, O., and Hashemizadeh, A. (2022b). The moderating role of financial development in the renewable energy consumption - CO2 emissions linkage: The case study of Next-11 countries. Energy, 254, 124386. https://doi.org/10.1016/j.energy.2022.124386.
-
WBI. (2025). Worldbank indicators on total population. Retrieved from https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS.
-
Yildirim, D. C., Yildirim, S., and Demirtas, I. (2019). Investigating energy consumption and economic growth for BRICS-T countries. World Journal of Science, Technology and Sustainable Development, 16(4), 84-195. http://doi.org/10.1108/WJSTSD-12-2018-0063.
-
Zafar, M. V., Zaidi, A. H.., Sinha, A., Gedikli, A., and Hou, F. (2019). The role of stock market and banking sector development, and renewable energy consumption in carbon emissions: Insights from G-7 and N-11 countries. Resources Policy, 62, 427–436. https://doi.org/10.1016/j.resourpol.2019.05.003.
-
Zeeshan, M., Han, J., Rehman, A., Ullah, I., Afridi, F. E. A., and Fareed, Z. (2022). Comparative analysis of trade liberalization, CO2 emissions, energy consumption and economic growth in Southeast Asian and Latin American regions: A structural equation modeling approach. Frontiers in Environmental Science, 10, 854590. https://doi.org/10.3389/fenvs.2022.854590.
Development of Trend analysis-based Forecast Models for Türkiye’s Fossil Fuel Consumption
Year 2025,
Volume: 15 Issue: 3, 1325 - 1340, 15.09.2025
Nokta Nurani Bektaş
,
İzzet Karakurt
,
Gökhan Aydın
Abstract
In this study, trend analysis-based forecast models were developed for Türkiye using total population (TP) and fossil fuel consumption (FFC) as independent and dependent variables from 1965 to 2023. The developed models were then verified by various statistical approaches such as determination coefficient (R2), F – and t tests and predicted vs actual data. Additionally, forecasting accuracies of the developed models were measured using the indicators of mean absolute deviation (MAD), mean square error (MSE), root mean square error (RMSE), uncertainty at 95% (U95), relative root mean square error (RRMSE), maximum absolute relative error (erMAX) and mean absolute percentage error (MAPE). Moreover, Türkiye’s FFC was projected from 2025 to 2035 using the proposed models. The results reveal that the future FFC of Türkiye can be successfully forecasted with one of the proposed models. Furthermore, the forecasting results evidently show that substantial increases are expected in Türkiye's future FFC.
References
-
Aydin, G., Kaya, S., and Karakurt, I. (2015, April). Modeling of energy consumption based on population: The case of Turkey. In M. Kılış (Ed.), Proceedings of 24th International Mining Congress and Exhibition of Turkey (pp. 88 – 92). Antalya, Türkiye.
-
Aydin, G. (2015). Forecasting natural gas production using various regression models. Petroleum Science and Technology, 33, 1486–1492. http://doi.org/10.1080/10916466.2015.1076842.
-
Aydin, G. (2014). Production modeling in the oil and natural gas industry: An application of trend analysis. Petroleum Science and Technology, 32(5), 555-564. https://doi.org/10.1080/10916466.2013.825271.
-
Azadeh, A., Saberi, M., Asadzadeh, S. M., and Khakestani, M. (2011). A hybrid fuzzy mathematical programming-design of experiment framework for improvement of energy consumption estimation with small data sets and uncertainty: The cases of USA, Canada, Singapore, Pakistan and Iran. Energy, 36(12), 6981-6992. https://doi.org/10.1016/j.energy.2011.07.016.
-
Bianco, V., Manca, O., Nardini, S., and Mine, A. A. (2010). Analysis and forecasting of nonresidential electricity consumption in Romania. Applied Energy, 87(11), 3584–3590. https://doi.org/10.1016/j.apenergy.2010.05.018.
-
Bianco, V., Scarpa, F., and Tagliafico, L. A. (2014). Analysis and future outlook of natural gas consumption in the Italian residential sector. Energy Conversion and Management, 87, 754–764. https://doi.org/10.1016/j.enconman.2014.07.081.
-
Byrne, R. F. (2012). Beyond traditional time-series: Using demand sensing to improve forecasts in volatile times. Journal of Business Forecasting, 31(2), 13-20.
-
Celiker, M., Yukseler, U., and Dursun, U. F. (2021). Trend analyses for discharge-recharge of Tacin karstic spring (Kayseri, Turkey). Journal of African Earth Sciences, 184, 104344. https://doi.org/10.1016/j.jafrearsci.2021.104344.
-
Chang, C. L., and Fang, M. (2022). Renewable energy-led growth hypothesis: New insights from BRICS and N-11 economies. Renewable Energy, 188, 788-800. https://doi.org/10.1016/j.renene.2022.02.052.
-
Demircioglu, M., and Esiyok, S. (2022). Energy consumption forecast of Turkey using artificial neural networks from a sustainability perspective. International Journal of Sustainable Energy, 41(8), 1127–1141. https://doi.org/10.1080/14786451.2022.2026357.
-
Despotovic, M., Nedic, V., Despotovic, D., and Cvetanovic, S. (2015). Review and statistical analysis of different global solar radiation sunshine models. Renewable and Sustainable Energy Reviews, 52, 1869–1880. http://dx.doi.org/10.1016/j.rser.2015.08.035.
-
Ehigiamusoe, K. U., and Dogan, E. (2022). The role of interaction effect between renewable energy consumption and real income in carbon emissions: Evidence from low-income countries. Renewable and Sustainable Energy Reviews, 154, 111883. https://doi.org/10.1016/j.rser.2021.111883
-
EI. (2024). Statistical review of world energy 2024. Retrieved from https://www.energyinst.org/statistical-review. Accessed on 15.03.2025.
-
Erba, S., and Beydogan, H. O. (2017). Attitudes of educators towards educational research. Kırsehir Journal of the Faculty of Education, 18(3), 246-260. https://dergipark.org.tr/tr/download/article-file/1487175.
-
Fareed, Z., and Pata, U. K. (2022). Renewable, non-renewable energy consumption and income in top ten renewable energy-consuming countries: Advanced Fourier based panel data approaches. Renewable Energy, 194, 805-821. https://doi.org/10.1016/j.renene.2022.05.156.
-
Gazder, U. (2016, December). Energy consumption trends in energy scarce and rich countries: comparative study for Pakistan and Saudi Arabia. In eds. W. E. Alnaser and A. A. Sayigh, World Renewable Energy Congress-17 (pp. 1 – 8), paper no. 07002. https://doi.org/10.1051/e3sconf/20172307002.
-
Kankal, M., Akpinar, A., Komurcu, I. M., and Ozsahin, S. T. (2011). Modeling and forecasting of Turkey’s energy consumption using socio-economic and demographic variables. Applied Energy, 88, 1927–1939. https://doi.org/10.1016/j.apenergy.2010.12.005.
-
Karakurt, I. (2020). Energy consumption modelling using socio-economic indicators: Evidence from the BRICS-T countries. Journal of the Southern African Institute of Mining and Metallurgy, 120(7), 425-43. https://doi.org/10.17159/2411-9717/901/2020.
-
Karakurt, I. (2021). Modelling and forecasting the oil consumptions of the BRICS-T countries. Energy, 119720. https://doi.org/10.1016/j.energy.2020.119720.
-
Kartal, M. T. (2022). The role of consumption of energy, fossil sources, nuclear energy, and renewable energy on environmental degradation in top-five carbon producing countries. Renewable Energy, 184, 871-880. https://doi.org/10.1016/j.renene.2021.12.022.
-
Kavaklioglu, K., Ceylan, H., Ozturk, K. H. and Canyurt, E. O. (2009). Modeling and prediction of Turkey’s electricity consumption using artificial neural networks. Energy Conversion and Management, 50, 2719–2727. https://doi.org/10.1016/j.enconman.2009.06.016.
-
Khan, A. M., and Osinska, M. (2021). How to predict energy consumption in BRICS countries?. Energies, 14, 2749. https://doi.org/10.3390/en14102749.
-
Kim, S., and Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), 669–679. https://doi.org/10.1016/j.ijforecast.2015.12.003.
-
Kok, B., and Benli, H. (2017). Energy diversity and nuclear energy for sustainable development in Turkey. Renewable Energy, 111, 870-877. https://doi.org/10.1016/j.renene.2017.05.001.
-
Kone, C. A., and Buke, T. (2010). Forecasting of CO2 emissions from fuel combustion using trend analysis. Renewable and Sustainable Energy Reviews, 14, 2906–2915. https://doi.org/10.1016/j.rser.2010.06.006.
-
Konuk, F., Zeren, F., Akpinar, S., and Yıldız, S. (2021). Biomass energy consumption and economic growth: Further evidence from NEXT-11 countries. Energy Reports, 7, 4825–4832. https://doi.org/10.1016/j.egyr.2021.07.070.
-
Kunvitaya, A., and Dhakal, S. (2017). Household energy requirements in two medium-sized Thai cities with different population densities. Environment and Urbanization, 267-282. https://doi.org/10.1177/0956247816659.
-
Lewis, C.D. (1982). International and business forecasting methods. Butterworths, London: Butterworth Scientific.
-
Li, M. F., Tang, X. P., Wu, W., and Liu, H. B. (2013). General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Conversion and Management, 70, 139–48. http://dx.doi.org/10.1016/j.enconman.2013.03.004.
-
Lorente, D. B., Driha, O. M., Halkos, G., and Mishra, S. (2022). Influence of growth and urbanization on CO2 emissions: The moderating effect of foreign direct investment on energy use in BRICS. Sustainable Development, 30, 227–240. https://doi.org/10.1002/sd.2240.
-
MEN. (2024). Ministry of Energy and Natural Resources of Türkiye. Retrieved from https://enerji.gov.tr/bilgi-merkezi-enerji-dogalgaz. Accessed on 17.03.2025.
-
Mensah, I. A., Sun, M., Gao, C., Omari-Sasu, A. Y., Zhu, D., Ampimah, B. C., and Quarcoo, A. (2019). Analysis on the nexus of economic growth, fossil fuel energy consumption, CO2 emissions and oil price in Africa based on a PMG panel ARDL approach. Journal of Cleaner Production, 228, 161-174. https://doi.org/10.1016/j.jclepro.2019.04.281.
-
Ohlan, R. (2015). The impact of population density, energy consumption, economic growth and trade openness on CO2 emissions in India. Natural Hazards, 79(2), 1409–1428. https://doi.org/10.1007/s11069-015-1898-0
-
Otsuka, A. (2018). Population agglomeration and residential energy consumption: Evidence from Japan. Sustainability, 10(2), 469(1-12). https://doi:10.3390/su10020469.
-
Ozdemir, M., Pehlivan, S., and Melikoglu, M. (2024). Estimation of greenhouse gas emissions using linear and logarithmic models: A scenario-based approach for Türkiye’s 2030 vision. Energy Nexus, 13, 100264. https://doi.org/10.1016/j.nexus.2023.100264.
-
Ozturk, S., and Ozturk, F. (2018). Forecasting energy consumption of Turkey by ARIMA model. Journal of Asian Scientific Research, 8(2), 52-60. https://doi.org/10.18488/journal.2.2018.82.52.60.
-
Paiva, H., Afonso, R. J. M., Caldeira, F. M. S. L. A., and Velasquez, E. A. A. (2021). Computational tool for trend analysis and forecast of the COVID-19 pandemic. Appl Soft Computing, 105, 107289. https://doi.org/10.1016/j.asoc.2021.107289.
-
Rahman, M. M. (2020). Exploring the effects of economic growth, population density and international trade on energy consumption and environmental quality in India. International Journal of Energy Sector Management, 14(6), 1177-1203. https://doi.org/10.1108/IJESM-11-2019-0014.
-
Rahman, M. M., Vu, X. B. (2021). Are energy consumption, population density and exports causing environmental damage in China? Autoregressive distributed lag and vector error correction model approaches. Sustainability, 13, 3749. https://doi.org/10.3390/su13073749.
-
Simba, A. H. M., and Oztek, M. F. (2020). Empirical analysis of energy consumption and economic growth in Tanzania: based on Engel and Granger test. Journal of Economics, Finance and Accounting, 7(3), 250-262. http://doi.org/10.17261/Pressacademia.2020.1292.
-
Somoye, O. A., Ozdeser, H., and Seraj, M. (2022). Modeling the determinants of renewable energy consumption in Nigeria: Evidence from Autoregressive Distributed Lagged in error correction approach. Renewable Energy, 190, 606-616. https://doi.org/10.1016/j.renene.2022.03.143.
-
Tabachnick, B. G., and Fidell, L. S. (2013). Using multivariate statistics. Boston, Nobel Akademik Yayıncılık.
-
Terzi, H., and Pata, U. K. (2016). The effect of oil consumption on economic growth in Turkey. Dogus University Journal, 17(2), 225-240. https://dergipark.org.tr/tr/download/article-file/2152173.
-
Tuzemen, O. B., and Tuzemen, S. (2022). The impact of foreign direct investment and biomass energy consumption on pollution in BRICS countries: A panel data analysis. Global Journal of Emerging Market Economies, 14(1), 76–92. https://doi.org/10.1177/09749101211067092.
-
Uma, J., Yun, H., Jeong, C. S., and Heo, J. H. (2011). Factor analysis and multiple regression between topography and precipitation on Jeju Island Korea. Journal of Hydrology, 410, 189–203. https://doi.org/10.1016/j.jhydrol.2011.09.016.
-
UN. (2018). United Nations, Department of Economic and Social Affairs, Population Division, World Urbanization Prospects: The 2018 Revision. Retrieved from https://population.un.org/wup/Download/ (2024, accessed 20 April 2024).
-
Wang, M., Wang, M., and Wu, L. (2022a). Application of a new grey multivariate forecasting model in the forecasting of energy consumption in 7 regions of China. Energy, 243, 123024. https://doi.org/10.1016/j.energy.2021.123024.
-
Wang, Z., Pham, T. L. H., Sun, K., Wang, B., Bui, O., and Hashemizadeh, A. (2022b). The moderating role of financial development in the renewable energy consumption - CO2 emissions linkage: The case study of Next-11 countries. Energy, 254, 124386. https://doi.org/10.1016/j.energy.2022.124386.
-
WBI. (2025). Worldbank indicators on total population. Retrieved from https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS.
-
Yildirim, D. C., Yildirim, S., and Demirtas, I. (2019). Investigating energy consumption and economic growth for BRICS-T countries. World Journal of Science, Technology and Sustainable Development, 16(4), 84-195. http://doi.org/10.1108/WJSTSD-12-2018-0063.
-
Zafar, M. V., Zaidi, A. H.., Sinha, A., Gedikli, A., and Hou, F. (2019). The role of stock market and banking sector development, and renewable energy consumption in carbon emissions: Insights from G-7 and N-11 countries. Resources Policy, 62, 427–436. https://doi.org/10.1016/j.resourpol.2019.05.003.
-
Zeeshan, M., Han, J., Rehman, A., Ullah, I., Afridi, F. E. A., and Fareed, Z. (2022). Comparative analysis of trade liberalization, CO2 emissions, energy consumption and economic growth in Southeast Asian and Latin American regions: A structural equation modeling approach. Frontiers in Environmental Science, 10, 854590. https://doi.org/10.3389/fenvs.2022.854590.