Araştırma Makalesi
BibTex RIS Kaynak Göster

Sınır Güvenliği ve Müdahale Görevi Yapan İHA’ların ÇKKV Yöntemleri ile Değerlendirilmesi

Yıl 2022, , 155 - 185, 02.11.2022
https://doi.org/10.17134/khosbd.1049863

Öz

İnsansız Hava Aracı (İHA), kendisini kullanan bir insan taşımayan, kaldırma kuvvetini oluşturabilmek amacıyla aerodinamik kuvvetleri kullanabilen, kendi kendine uçabilen veya uzaktan yönetilebilen, tekrar kullanılabilen veya kullanılamayan ve ölümcül veya ölümcül olmayan faydalı yükler taşıma kabiliyetine sahip motorlu hava aracıdır. Teknolojinin yükselen bir hızla gelişmesiyle beraber İHA’ların kabiliyetleri de aynı oranda artmış ve birçok askeri görevde kullanılmaya başlanmıştır. Fakat, askeri başarı elde edebilmek yalnızca bu modern gelişmiş hava araçlarına sahip olmak yeterli değildir. Görevlerin ifa oranlarını arttırmak ve alan hakimiyetini yakalayarak savaşı kazanmak için görev tipine uygun sistemlerin kullanım planlamasının yapılması şarttır. Bu tür planlamalarla görevlerdeki başarı oranı artacak ve kullanan taraf üstünlük elde edecektir. Bu çalışmada gelişmiş orduların envanterinde bulunan farklı türlerdeki 9 İHA’nın sınır güvenliği ve müdahale görevlerini yerine getirmesi için çok kriterli karar verme (ÇKKV) yöntemleri ile değerlendirilmesi yapılmıştır. Bu 9 İHA büyüklük, tür, kabiliyet vb. yönlerden birbirinden ayrılmaktadır. Bu çalışmanın amacı, belirlenen görev için uygun İHA’nın sıralamasının tespit edilmesidir. Çalışmada kullanılan kriterler İHA’lar konusunda uzman kişilerle değerlendirilip 8 ana başlıkta gruplandırılmıştır. Kriterlerin ağırlıklandırılması için ikili kıyaslamalar yapılarak, kriter ağırlıkları AHP yöntemiyle ortaya konmuştur. İHA’ların sıralamaları ve seçimini yapabilmek için literatüre son yıllarda kazandırılmış olan ÇKKV yöntemlerinden ARAS, EDAS ve WASPAS metotları ile literatüre daha eski yıllarda kazandırılmış sıkça kullanılan MAUT, TOPSIS ve VIKOR yöntemleri kullanılmıştır. Böylece hem eski yöntemlerin hem de yeni yöntemlerin kullanımı ile farklı bir bakış açısına sahip çözüm geliştirilmeye çalışılmıştır. Uygulanan yöntemlerden bulunan önceliklendirme sonuçları analiz edilmiş ve sonuçlar normalize edilip ortalamaları bulunarak her İHA’ya ait nihai bütünleşik önceliklendirme puanı (NBÖP) elde edilmiştir. Böylece önceliklendirme değerlerinin güvenilirlik, doğruluk ve tutarlılık düzeylerinin arttırılması amaçlanmıştır. Uygulanan yöntemler sonucu bulunan sonuçlar yorumlanmıştır.

Kaynakça

  • Hwang, C.L. and Yoon, K. (1981) Multiple Attribute Decision Making: Methods and Applications, New York: Springer-Verlag, 58-65.
  • Cheng, C. H. (1997). Evaluating naval tactical missile systems by fuzzy AHP based on the grade value of membership function. European Journal of Operational Research, 96(2), 343-350.
  • Cheng, C. H., Yang, K. L., and Hwang, C. L. (1999). Evaluating attack helicopters by AHP based on linguistic variable weight. European Journal of Operational Research, 116(2), 423-435.
  • Cristóbal, J.R.S. (2012). Contractor Selection Using Multicriteria Decision-Making Methods. Journal of Construction Engineering and Management, 138(6), 751-758.
  • Çarman, F., & Tuncer Şakar, C. (2019). An MCDM-integrated maximum coverage approach for positioning of military surveillance systems. Journal of the Operational Research Society, 70(1), 162-176.
  • Genc, T. (2015). Application of ELECTRE III and PROMETHEE II in evaluating the military tanks. International Journal of Procurement Management, 8(4), 457-475.
  • Hamurcu, M., and Eren, T. (2020). Selection of Unmanned Aerial Vehicles by Using Multicriteria Decision-Making for Defence. Journal of Mathematics, Volume 2020.
  • Jafarzadeh, J., and Valizadeh Kamran, K. (2018). Locating military bases with passive defense approach and using a combination of remote sensing and MCDM. The Journal of Urban Planning and Research, 9(32), 41-52
  • Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435-451.
  • Köse, E., Kabak, M., & Aplak, H. (2013). Grey theory based MCDM procedure for sniper selection problem, Grey Systems: Theory and Application, 3(1), 35-45.
  • Lashgari, S., Antuchevičienė, J., Delavari, A., & Kheirkhah, O. (2014). Using QSPM and WASPAS methods for determining outsourcing strategies. Journal of Business Economics and Management, 15(4), 729-743.
  • Li H., Adeli H., Sun J., and Han J.G., (2011). Hybridizing Principles of TOPSIS with Case-Based Reasoning for Business Failure Prediction, Computers and Operations Research, 38(2), 409-419.
  • Lin M.C., Wang, C.C., Chen, M.S., and Chang, C.A., (2008). Using AHP And TOPSIS Approaches in Customer-Driven Product Design Proces, Computers in Industry, 59(1), 17-31.
  • Lin, K. P., & Hung, K. C. (2011). An efficient fuzzy weighted average algorithm for the military UAV selecting under group decision-making. Knowledge-Based Systems, 24(6), 877-889.
  • Opricovic S. and Tzeng G.H., (2004). “Compromise Solution by MCDM Methods: A Comparative Analysis of VIKOR and TOPSIS”, European Journal of Operational Research, 156, 445-455.
  • Saaty, T. L. (1986). Axiomatic foundation of the analytic hierarchy process. Management Science, 32(7), 841-855.
  • Sennaroglu, B., & Celebi, G. V. (2018). A military airport location selection by AHP integrated PROMETHEE and VIKOR methods. Transportation Research Part D: Transport and Environment, 59, 160-173.
  • Silva, L. C., Daher, S. D. F. D., Santiago, K. T. M., and Costa, A. P. C. S. (2019). Selection of an Integrated Security Area for locating a State Military Police Station based on MCDM/A method. Paper presented at the IEEE International Conference on Systems, Man and Cybernetics (SMC). Italy.
  • Sliogeriene, J., Turskis, Z., & Streimikiene, D. (2013). Analysis and choice of energy generation technologies: The multiple criteria assessment on the case study of Lithuania. Energy Procedia, 32, 11-20.
  • Tzeng, G.H. and Huang, J.J. (2011). Multiple Attribute Decision Making Methods and Applications, United States of America: CRC Press Taylor & Francis Group, LLC, 69-71.
  • Uçakcioğlu, B., ve Tamer, E. (2017). Analitik hiyerarşi prosesi ve VIKOR yöntemleri ile hava savunma sanayisinde yatırım projesi seçimi. Harran Üniversitesi Mühendislik Dergisi, 2(2), 35-53.
  • Wang, T. C., and Chang, T. H. (2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Systems with Applications, 33(4), 870-880.
  • Zavadskas, E. K., Turskis, Z., & Vilutiene, T. (2010). Multiple criteria analysis of foundation instalment alternatives by applying Additive Ratio Assessment (ARAS) method. Archives of civil and mechanical engineering, 10(3), 123-141.
  • Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika ir elektrotechnika, 122(6), 3-6.
  • Anık, Z. (2007). Nesne yönelimli yazılım dillerinin analitik hiyerarşi ve analitik network prosesi ile karşılaştırılması ve değerlendirilmesi. Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Løken, E. (2007). Multi-Criteria Planning of Local Energy Systems with Multiple Energy Carriers, Ph.D thesis, Norwegian University of Science and Technology Faculty of Information Technology, Norway.
  • Özge, İ. (2008). İç güvenlikte kullanılacak insansız hava aracı seçiminde analitik hiyerarşi metodunun kullanılması. Yüksek Lisans Tezi, Gazi Üniversitesi Sosyal Bilimler Enstitüsü, Ankara.
  • Ulucan, S. (2016). Gri tabanlı insansız hava aracı seçimi. Yüksek Lisans Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Ankara.

Evalution of UAVs With MCDM Methods for Border Security And Intervention

Yıl 2022, , 155 - 185, 02.11.2022
https://doi.org/10.17134/khosbd.1049863

Öz

An Unmanned Aerial Vehicle (UAV) is a motorized aircraft that does not carry a person using it, can use aerodynamic forces to create lift, can fly by itself or can be managed remotely, can be reused or not, and is capable of carrying deadly or non-lethal payloads. With the rapid development of technology, the capabilities of UAVs have increased at the same rate and they have started to be used in many military missions. However, having these modern advanced aircraft is not enough to achieve military success. It is essential to plan the use of systems suitable for the type of mission in order to increase the performance of the missions and win the war by capturing area dominance. With such planning, the success rate in tasks will increase and the user will gain superiority. In this study, 9 different types of UAVs in the inventory of advanced armies were evaluated with multi-criteria decision making (MCDM) methods to fulfill their border security and intervention duties. These 9 UAVs vary in size, type, capability, etc. differ from each other in all aspects. The purpose of this study is to determine the sequence of the suitable UAV for the determined mission. The criteria used in the study were evaluated with experts on UAVs and grouped under 8 main headings. In order to weight the criteria, pairwise comparisons were made and the criteria weights were determined by the AHP method. In order to rank and select UAVs, ARAS, EDAS and WASPAS methods, which have been introduced to the literature in recent years, and MAUT, TOPSIS and VIKOR methods, which are frequently used in the literature, were used. Thus, it has been tried to develop a solution with a different perspective by using both old methods and new methods. The prioritization results from the applied methods were analyzed and the results were normalized and the averages were found, and the final integrated prioritization score (NBÖP) of each UAV was obtained. Thus, it is aimed to increase the reliability, accuracy and consistency levels of the prioritization values. The results obtained as a result of the applied methods are interpreted.

Kaynakça

  • Hwang, C.L. and Yoon, K. (1981) Multiple Attribute Decision Making: Methods and Applications, New York: Springer-Verlag, 58-65.
  • Cheng, C. H. (1997). Evaluating naval tactical missile systems by fuzzy AHP based on the grade value of membership function. European Journal of Operational Research, 96(2), 343-350.
  • Cheng, C. H., Yang, K. L., and Hwang, C. L. (1999). Evaluating attack helicopters by AHP based on linguistic variable weight. European Journal of Operational Research, 116(2), 423-435.
  • Cristóbal, J.R.S. (2012). Contractor Selection Using Multicriteria Decision-Making Methods. Journal of Construction Engineering and Management, 138(6), 751-758.
  • Çarman, F., & Tuncer Şakar, C. (2019). An MCDM-integrated maximum coverage approach for positioning of military surveillance systems. Journal of the Operational Research Society, 70(1), 162-176.
  • Genc, T. (2015). Application of ELECTRE III and PROMETHEE II in evaluating the military tanks. International Journal of Procurement Management, 8(4), 457-475.
  • Hamurcu, M., and Eren, T. (2020). Selection of Unmanned Aerial Vehicles by Using Multicriteria Decision-Making for Defence. Journal of Mathematics, Volume 2020.
  • Jafarzadeh, J., and Valizadeh Kamran, K. (2018). Locating military bases with passive defense approach and using a combination of remote sensing and MCDM. The Journal of Urban Planning and Research, 9(32), 41-52
  • Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435-451.
  • Köse, E., Kabak, M., & Aplak, H. (2013). Grey theory based MCDM procedure for sniper selection problem, Grey Systems: Theory and Application, 3(1), 35-45.
  • Lashgari, S., Antuchevičienė, J., Delavari, A., & Kheirkhah, O. (2014). Using QSPM and WASPAS methods for determining outsourcing strategies. Journal of Business Economics and Management, 15(4), 729-743.
  • Li H., Adeli H., Sun J., and Han J.G., (2011). Hybridizing Principles of TOPSIS with Case-Based Reasoning for Business Failure Prediction, Computers and Operations Research, 38(2), 409-419.
  • Lin M.C., Wang, C.C., Chen, M.S., and Chang, C.A., (2008). Using AHP And TOPSIS Approaches in Customer-Driven Product Design Proces, Computers in Industry, 59(1), 17-31.
  • Lin, K. P., & Hung, K. C. (2011). An efficient fuzzy weighted average algorithm for the military UAV selecting under group decision-making. Knowledge-Based Systems, 24(6), 877-889.
  • Opricovic S. and Tzeng G.H., (2004). “Compromise Solution by MCDM Methods: A Comparative Analysis of VIKOR and TOPSIS”, European Journal of Operational Research, 156, 445-455.
  • Saaty, T. L. (1986). Axiomatic foundation of the analytic hierarchy process. Management Science, 32(7), 841-855.
  • Sennaroglu, B., & Celebi, G. V. (2018). A military airport location selection by AHP integrated PROMETHEE and VIKOR methods. Transportation Research Part D: Transport and Environment, 59, 160-173.
  • Silva, L. C., Daher, S. D. F. D., Santiago, K. T. M., and Costa, A. P. C. S. (2019). Selection of an Integrated Security Area for locating a State Military Police Station based on MCDM/A method. Paper presented at the IEEE International Conference on Systems, Man and Cybernetics (SMC). Italy.
  • Sliogeriene, J., Turskis, Z., & Streimikiene, D. (2013). Analysis and choice of energy generation technologies: The multiple criteria assessment on the case study of Lithuania. Energy Procedia, 32, 11-20.
  • Tzeng, G.H. and Huang, J.J. (2011). Multiple Attribute Decision Making Methods and Applications, United States of America: CRC Press Taylor & Francis Group, LLC, 69-71.
  • Uçakcioğlu, B., ve Tamer, E. (2017). Analitik hiyerarşi prosesi ve VIKOR yöntemleri ile hava savunma sanayisinde yatırım projesi seçimi. Harran Üniversitesi Mühendislik Dergisi, 2(2), 35-53.
  • Wang, T. C., and Chang, T. H. (2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Systems with Applications, 33(4), 870-880.
  • Zavadskas, E. K., Turskis, Z., & Vilutiene, T. (2010). Multiple criteria analysis of foundation instalment alternatives by applying Additive Ratio Assessment (ARAS) method. Archives of civil and mechanical engineering, 10(3), 123-141.
  • Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika ir elektrotechnika, 122(6), 3-6.
  • Anık, Z. (2007). Nesne yönelimli yazılım dillerinin analitik hiyerarşi ve analitik network prosesi ile karşılaştırılması ve değerlendirilmesi. Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Løken, E. (2007). Multi-Criteria Planning of Local Energy Systems with Multiple Energy Carriers, Ph.D thesis, Norwegian University of Science and Technology Faculty of Information Technology, Norway.
  • Özge, İ. (2008). İç güvenlikte kullanılacak insansız hava aracı seçiminde analitik hiyerarşi metodunun kullanılması. Yüksek Lisans Tezi, Gazi Üniversitesi Sosyal Bilimler Enstitüsü, Ankara.
  • Ulucan, S. (2016). Gri tabanlı insansız hava aracı seçimi. Yüksek Lisans Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Aygün Altundaş 0000-0002-0461-6780

Kemal Gürol Kurtay 0000-0003-4268-2401

Serpil Erol 0000-0002-6885-3849

Yayımlanma Tarihi 2 Kasım 2022
Gönderilme Tarihi 29 Aralık 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

IEEE A. Altundaş, K. G. Kurtay, ve S. Erol, “Sınır Güvenliği ve Müdahale Görevi Yapan İHA’ların ÇKKV Yöntemleri ile Değerlendirilmesi”, Savunma Bilimleri Dergisi, sy. 42, ss. 155–185, Kasım 2022, doi: 10.17134/khosbd.1049863.