BibTex RIS Kaynak Göster

Analysis of Energy Dissipation Mechanisms of Woven Fabrics Subjected to Ballistic Impact

Yıl 2013, Cilt: 12 Sayı: 2, 145 - 162, 01.06.2013

Öz

It is important for combat vehicles and technological defense systems used in the battlefield to be lightweight for maneuverability while they still provide effective protection for survivability. Desired ballistic protection of defense systems may be attained by armor systems developed with different materials. The most important factor in the design of armor is the optimization of ballistic protection/weight ratio. The protection degree needed for sufficient survivability is limited by the factors such as maneuver elements, speed, weight, confidentiality and fuel demand of vehicles. In order to ensure the most effective protection level, newly developed ballistic braided fabrics such as Zylon, Kevlar, Spectra with high impact resistance and strength are used. These materials possess high strength, fracture toughness, fatigue resistance and excellent ballistic properties. In this study, by using multi-scale approach the most accurate estimation of macro-scaled fracture behavior of ballistic woven fabric has been analyzed based on the micro-scaled material properties of the fibers. Penetration of a bullet into the armor depends on parameters such as material properties of fibers and yarns, woven structure, bullet geometry, mass and velocity, the interaction of the layers, boundary conditions, interaction of yarns between each other and bullet. Correct determination of the minimum layer thickness of woven fabric which is expected to stop a bullet with known impact velocity and mass is the most important design process.

Kaynakça

  • Cheeseman, B.A., Bogetti, T.A. (2003). Ballistic Impact Into Fabric and Compliant Composite Laminates. Compos. Struct., 61, 161–173.
  • DARPA DSO Technology Thrust, Personnel Protection. http://www.darpa.mil/dso/thrust/md/str_5.htm. adresinden alınmıştır. Duan, Y., Kefe, M., Bogetti, T.A. (2005). Cheeseman BA. Modeling the role of friction during ballistic impact of a high-strength plain-weave fabric. Compos Struct, 68, 331–7.
  • Duan, Y., Kefe, M., Bogetti, T.A. (2005). Cheeseman BA. Modeling friction effects on the ballistic impact behavior of a single-ply high strength fabric. Int. J. Impact Eng., 31, 996–1012.
  • Duan, Y., Kefe, M., Bogetti, T.A. (2006). Powers B. Finite element modeling of transverse impact on a ballistic fabric. Int. J. Mech. Sci., 48, 33–43.
  • Evci, C., Gülgeç, M. (2012). An experimental investigation on the impact response of composite materials. Int. J. Impact Eng., 43, 40–51.
  • First Defense. http://www.firstdefense.com/html/vest_kevlar_vs_spectra.htm adresinden alınmıştır. Gray, G.T. (2000) Classic Split-Hopkinson pressure bar testing ASM Handbook. Vol. 8: Mechanical Testing and Evaluation ed. H. Kuhn and D. Medlin (Materials Park, OH: ASM International), 462–76.
  • Powell, D., Zohdi, T.I., Johnson, G. (2008). Multiscale modeling of structural fabric undergoing impact. FAA report DOT/FAA/AR-08/38.
  • Powell, D., Zohdi, T.I. (2009). Attachment mode performance of network-modeled ballistic fabric shielding. Compos. Part B: Engrg, 40(6), 451–460.
  • Powell, D., Zohdi, T.I. (2009). A note on flaw-induced integrity reduction of structural fabric. Int. J. Fract./Lett. Micromech, 158, 89–96.
  • Zohdi, T.I. (2002). Modeling and simulation of progressive penetration of multilayered ballistic fabric shielding. Comput. Mech., 29, 61–67.
  • Zohdi, T.I., Steigmann, D.J. (2002). The toughening effect of microscopic filament misalignment on macroscopic fabric response. Int. J. Fract., 115, 9-14. Zohdi, T.I., Powell, D. (2006). Multiscale construction and large-scale simulation of structural fabric undergoing ballistic impact. Comput. Methods Appl. Mech. Engrg., 195(1-3), 94–109.
  • Zohdi, T.I. (2007). Computation of strongly coupled multifield interaction in particlefluid systems. Comput. Methods Appl. Mech. Engrg., 196, 3927– 39
  • Zohdi, T.I. (2009). Microfibril-based estimates of the ballistic limit of multilayered fabric shielding. Int. J. Fract./Lett. Micromech., 158, 81–88.
  • Zohdi, T.I. (2010). High-speed impact with electromagnetically sensitive fabric and induced projectile spin. Comput. Mech., 46, 399–415.
  • Zohdi, T.I. (2010). Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD. Comput. Methods Appl. Mech. Engrg., 199, 79–101.
  • Zohdi, T.I. (2011). Electromagnetically-induced deformation of functionalized fabric. J. Elast., 10(1–2), 381–398.

Örgülü Kumaşların Balistik Darbe Enerji Sönümleme Mekanizmalarının İncelenmesi

Yıl 2013, Cilt: 12 Sayı: 2, 145 - 162, 01.06.2013

Öz

Muharebe araçları ile savunma maksatlı kullanılan teknolojik sistemlerin manevra için hafif olması ve beka için etkin koruma sağlaması önem arz etmektedir. Bekaya yönelik olarak istenen balistik koruma seviyesi farklı malzemelerle geliştirilen zırh sistemleri ile sağlanabilmektedir. Zırh tasarımında önemli parametrelerin başında koruma/ağırlık optimizasyonu bulunmaktadır. Beka yeteneği için ihtiyaç duyulan koruma seviyesini; zorlu arazi şartlarındaki güç, hız ve manevra ihtiyacı ile aracın harekat menzil ihtiyacı sınırlandırmaktadır. En etkin koruma seviyesinin sağlanması için, yeni geliştirilen darbe dirençleri yüksek mukavemetli Zylon, Kevlar, Spectra gibi balistik örgülü kumaşlar kullanılmaktadır. Bu malzemeler yüksek mukavemete, kırılma tokluğuna, yorulma dayanımına ve balistik özelliklere sahiptir. Bu çalışmada, çoklu-ölçek yaklaşımı ile bir ipliği oluşturan mikro-ölçekteki liflerin malzeme özelliklerine dayanarak balistik örgülü kumaşın makro-ölçekli kopma davranışının en az hata ile tahmini incelenmiştir. Merminin zırha nüfuz etmesi; lif ve ipliklerin malzeme özellikleri, dokuma yapısı, mermi geometrisi, kütlesi ve hızı, katmanların etkileşimi, sınır şartları, ipliklerin birbirleriyle ve mermi ile olan etkileşim parametrelerine bağlıdır. Çarpma hızı ve kütlesi bilinen bir mermiyi durduracak örgülü kumaşın malzeme özelliklerine göre minimum katman kalınlığının doğru tespit edilmesi tasarımın en önemli sürecidir.

Kaynakça

  • Cheeseman, B.A., Bogetti, T.A. (2003). Ballistic Impact Into Fabric and Compliant Composite Laminates. Compos. Struct., 61, 161–173.
  • DARPA DSO Technology Thrust, Personnel Protection. http://www.darpa.mil/dso/thrust/md/str_5.htm. adresinden alınmıştır. Duan, Y., Kefe, M., Bogetti, T.A. (2005). Cheeseman BA. Modeling the role of friction during ballistic impact of a high-strength plain-weave fabric. Compos Struct, 68, 331–7.
  • Duan, Y., Kefe, M., Bogetti, T.A. (2005). Cheeseman BA. Modeling friction effects on the ballistic impact behavior of a single-ply high strength fabric. Int. J. Impact Eng., 31, 996–1012.
  • Duan, Y., Kefe, M., Bogetti, T.A. (2006). Powers B. Finite element modeling of transverse impact on a ballistic fabric. Int. J. Mech. Sci., 48, 33–43.
  • Evci, C., Gülgeç, M. (2012). An experimental investigation on the impact response of composite materials. Int. J. Impact Eng., 43, 40–51.
  • First Defense. http://www.firstdefense.com/html/vest_kevlar_vs_spectra.htm adresinden alınmıştır. Gray, G.T. (2000) Classic Split-Hopkinson pressure bar testing ASM Handbook. Vol. 8: Mechanical Testing and Evaluation ed. H. Kuhn and D. Medlin (Materials Park, OH: ASM International), 462–76.
  • Powell, D., Zohdi, T.I., Johnson, G. (2008). Multiscale modeling of structural fabric undergoing impact. FAA report DOT/FAA/AR-08/38.
  • Powell, D., Zohdi, T.I. (2009). Attachment mode performance of network-modeled ballistic fabric shielding. Compos. Part B: Engrg, 40(6), 451–460.
  • Powell, D., Zohdi, T.I. (2009). A note on flaw-induced integrity reduction of structural fabric. Int. J. Fract./Lett. Micromech, 158, 89–96.
  • Zohdi, T.I. (2002). Modeling and simulation of progressive penetration of multilayered ballistic fabric shielding. Comput. Mech., 29, 61–67.
  • Zohdi, T.I., Steigmann, D.J. (2002). The toughening effect of microscopic filament misalignment on macroscopic fabric response. Int. J. Fract., 115, 9-14. Zohdi, T.I., Powell, D. (2006). Multiscale construction and large-scale simulation of structural fabric undergoing ballistic impact. Comput. Methods Appl. Mech. Engrg., 195(1-3), 94–109.
  • Zohdi, T.I. (2007). Computation of strongly coupled multifield interaction in particlefluid systems. Comput. Methods Appl. Mech. Engrg., 196, 3927– 39
  • Zohdi, T.I. (2009). Microfibril-based estimates of the ballistic limit of multilayered fabric shielding. Int. J. Fract./Lett. Micromech., 158, 81–88.
  • Zohdi, T.I. (2010). High-speed impact with electromagnetically sensitive fabric and induced projectile spin. Comput. Mech., 46, 399–415.
  • Zohdi, T.I. (2010). Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD. Comput. Methods Appl. Mech. Engrg., 199, 79–101.
  • Zohdi, T.I. (2011). Electromagnetically-induced deformation of functionalized fabric. J. Elast., 10(1–2), 381–398.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Halil Işık Bu kişi benim

Ercan Değirmenci Bu kişi benim

Celal Evci Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2013
Gönderilme Tarihi 27 Temmuz 2014
Yayımlandığı Sayı Yıl 2013 Cilt: 12 Sayı: 2

Kaynak Göster

IEEE H. Işık, E. Değirmenci, ve C. Evci, “Örgülü Kumaşların Balistik Darbe Enerji Sönümleme Mekanizmalarının İncelenmesi”, Savunma Bilimleri Dergisi, c. 12, sy. 2, ss. 145–162, 2013, doi: 10.17134/sbd.23424.