Bu bildiride, sivil araç zırhlaması üzerine yapılan araştırmalar ve bu alanda kullanılmak üzere tasarlanan seramik kompozit bir zırhın balistik test sonuçları sunulmuştur. Günümüzün farklı mühimmat tehdit seviyelerine karşı askeri araçlarda olduğu gibi sivil araçlarda da zırhlama çok önemli bir konu haline gelmiştir. Ayrıca ağırlığın çok önemli bir tasarım kriteri olması nedeniyle hafif zırh sistemlerine olan talep de artmaktadır. Ağırlık, aracın yakıt tüketimini, motor gücünü ve ilgili diğer sistem gereksinimlerini artırır ve manevra kabiliyetini azaltır. Çalışmada sunulan bağımsız zırh, sivil araçlarda kullanılmak üzere geliştirilmiş ve zırh panelinin ağırlık kazancı, Ultra Yüksek Sertlikli (UHH) zırh çelikleri (Armox 600T ve Armox Advance) ile karşılaştırılmıştır. Geliştirilen zırh, darbe yüzünde alümina (Al2O3) seramik karolardan ve son katmanda Ultra Yüksek Moleküler Ağırlıklı Polietilen (UHWMPE) kompozit destek plakasından oluşmaktadır ve 7.62 mm x 51 M61 AP mermiye karşı test edilmiştir. Hafif zırh panelinin beş atıştan sonra yapısal bütünlüğünü koruduğu gözlemlenmiştir. Geliştirilen zırh panelinin sivil zırhlı araçlar için 7.62 mm zırh delici mühimmatlara karşı hafif ve uygun maliyetli çözüm sağladığı değerlendirilmektedir.
Alpine Armoring. What Makes an Armored Vehicle more Secure than Other Cars?. https://www.alpineco.com/blog/2/what-makes-an-armored-vehicle-more-secure-than-other-cars?
Anadolu Ajansı, (2016). Bomb Blast Targets Afghan MP in Kabul. ( https://www.aa.com.tr/en/pg/photo-gallery/bomb-blast-targets-afghan-mp-in-kabul
ArcelorMittal. Mars Steels for Military. Applications. https://industeel.arcelormittal.com/fichier/mars-protection-grades/
Aurum Security, (2017). An explosion in the Diplomatic District of Kabul. https://www.aurum-security.de/en/about-us/news/372-an-explosion-in-the-diplomatic-district-of-kabul
Aurum Security. Example of a regular not tested Armored vehicles. http://www.aurum-security.de/en/our-cars/short-summary.html
Aurum Security. Level of Ballistic Protection. http://www.aurum-security.de/en/us-and-them/the-level-of-ballistic-protection
Aurum Security. Protection Levels B1-B7 vs VPAM. http://www.aurum-security.de/en/standards/protection-levels-b1-b7-and-vpam.html
Aurum Security, (2017). The explosion in the capital of Afghanistan. https://www.aurum-security.de/en/about-us/news/371-the-explosion-in-the-capital-of-afghanistan
Bürger, D., Faria, A.R., Almeida, S.F.M., Melo, F.C.L., & Donadon, M.V. (2012). Ballistic impact simulation of an armour-piercing projectile on hybrid ceramic/fiber reinforced composite armours. International Journal of Impact Engineering, 43, 63-77. https://doi.org/10.1016/j.ijimpeng.2011.12.001
Crouch I.G. (2017). Introduction to Armour Materials. In: Crouch I.G., editor. The Science of Armour Materials. Duxford: Woodhead Publishing
DEW Engineering and Development. Levels of Protection. https://dewpd.com/ballistic-door-panels/threat-levels
DEW Engineering and Development. Technical Ceramics. https://dewpd.com/about
Dunstan, S. (1984). Flak Jackets: 20th Century Military Body Armour. London: Osprey Publishing Ltd.
Göde, E. (2020). A New Ceramic Based Detachable Modular External Vehicle Armor Design. [Unpublished Doctoral Dissertation]. Eskisehir Osmangazi University
Grujicic, M., Pandurangan, B., & d’Entremont, B. (2012). The role of adhesive in the ballistic/structural performance of ceramic/polymer–matrix composite hybrid armor. Materials&Design, 41, 380-393. https://doi.org/10.1016/j.matdes.2012.05.023
Kamel, H. (2017). Studying the trade-off between protection and mobility of armored vehicles. ASME 2017 International Mechanical Engineering Congress & Exposition (p. 1-12)
Kaufmann, C., Cronin, D., Worswick, M., Pageau, G., & and Beth, A. (2003). Influence of material properties on the ballistic performance of ceramics for personal body armour. Shock and Vibration, 10(1), 51-58. https://doi.org/10.1155/2003/357637
Khan, M.K., & Iqbal, M.A. (2022). Failure and fragmentation of ceramic target with varying geometric configuration under ballistic impact. Ceramics International, 48(18), 26147-26167. https://doi.org/10.1016/j.ceramint.2022.05.297
Lopez-Puente, J., Arias, A., Zaera, R., & Navarro, C. (2005). The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study. International Journal of Impact
Engineering, 32(1-4), 321-336. https://doi.org/10.1016/j.ijimpeng.2005.07.014
Makine ve Kimya Endüstrisi Inc. 7.62 mm x 51 Zırh Delici Ürün Detayı. https://urunler.mke.gov.tr/Urunler/7.62-mm-x-51-Z%C4%B1rh-Delici/30/260
Marx, J., Portanova, M., & Rabiei, A. (2018). A study on blast and fragment resistance of composite metal foams through experimental and modeling approaches. Composite Structures, 194, 652-661. https://doi.org/10.1016/j.compstruct.2018.03.075
Plasan. Armored Mercedes-Benz Sprinter Van. https://vehicles.plasan.com/car/armored-mercedes-benz-sprinter-van/
Roberson, C.J. (1995). Ceramic materials and their use in lightweight armour systems. Lightweight Armour System Symposium. Royal Military College of Science, Cranfield, England
Rolston, R.F., Bodine, E., & Dunleavy, J. (1968). Breakthrough in armor. Space/Aeronautics, 55-63
Solms-Laubach, V.F. (2014). Diplomatenautos nicht kugelsicher. https://www.bild.de/politik/inland/dienstwagen/panzerung-deutscherbotschaftsfahrzeuge-nicht-kugelsicher-36866334.bild.html
Stewart, M.G., & Netherton, M.D. (2020). Statistical variability and fragility assessment of ballistic perforation of steel plates for 7.62 mm AP ammunition. Defence Technology, 16(3), 503-513. https://doi.org/10.1016/j.dt.2019.10.013
Teoman, A., Öğünç, G.İ., Göde, E., Tonbul, K., & Özer, V. (2022). Sivil araç zırhlama. K.Leblebicioğlu, R.O.Yıldırım, M.İ.Gökler, E. Ciğercioğlu, G.O.Özgen, A.G.Uluyurt (Eds.), In proceedings of SAVTEK 2022, 10. Savunma Teknolojileri Kongresi (547-557). Ankara.
Türk Savunma Sanayii Ürün Kataloğu. Gizli Zırhlı Pickup. https://www.ssb.gov.tr/urunkatalog/tr/36/#zoom=z
Türk Savunma Sanayii Ürün Kataloğu. Taktik Tekerlekli Araçlar. https://www.ssb.gov.tr/urunkatalog/tr/35/
United States Goverment Accountability Office, (2017). Armored Commercial Vehicles. https://www.gao.gov/assets/690/685184.pdf
Universal Defense for Military Equipment. Armored Cars. http://www.universal-defense.com/UD/Armory_files/6_Armoured_Cars.pdf
Wikipedia, (2023). Armored Car (VIP). https://en.wikipedia.org/wiki/Armored_car_(VIP)
Yogiata, S., & Kriti, K. Armoring The civilian. https://counteriedreport.com/articles/armoring-the-civilian/
SİVİL (GİZLİ ZIRHLI) ARAÇ ZIRHLAMA VE SERAMİK KOMPOZİT ZIRH UYGULAMALARI
Bu bildiride, sivil araç zırhlaması üzerine yapılan araştırmalar ve bu alanda kullanılmak üzere tasarlanan seramik kompozit bir zırhın balistik test sonuçları sunulmuştur. Günümüzün farklı mühimmat tehdit seviyelerine karşı askeri araçlarda olduğu gibi sivil araçlarda da zırhlama çok önemli bir konu haline gelmiştir. Ayrıca ağırlığın çok önemli bir tasarım kriteri olması nedeniyle hafif zırh sistemlerine olan talep de artmaktadır. Ağırlık, aracın yakıt tüketimini, motor gücünü ve ilgili diğer sistem gereksinimlerini artırır ve manevra kabiliyetini azaltır. Çalışmada sunulan bağımsız zırh, sivil araçlarda kullanılmak üzere geliştirilmiş ve zırh panelinin ağırlık kazancı, Ultra Yüksek Sertlikli (UHH) zırh çelikleri (Armox 600T ve Armox Advance) ile karşılaştırılmıştır. Geliştirilen zırh, darbe yüzünde alümina (Al2O3) seramik karolardan ve son katmanda Ultra Yüksek Moleküler Ağırlıklı Polietilen (UHWMPE) kompozit destek plakasından oluşmaktadır ve 7.62 mm x 51 M61 AP mermiye karşı test edilmiştir. Hafif zırh panelinin beş atıştan sonra yapısal bütünlüğünü koruduğu gözlemlenmiştir. Geliştirilen zırh panelinin sivil zırhlı araçlar için 7.62 mm zırh delici mühimmatlara karşı hafif ve uygun maliyetli çözüm sağladığı değerlendirilmektedir.
Alpine Armoring. What Makes an Armored Vehicle more Secure than Other Cars?. https://www.alpineco.com/blog/2/what-makes-an-armored-vehicle-more-secure-than-other-cars?
Anadolu Ajansı, (2016). Bomb Blast Targets Afghan MP in Kabul. ( https://www.aa.com.tr/en/pg/photo-gallery/bomb-blast-targets-afghan-mp-in-kabul
ArcelorMittal. Mars Steels for Military. Applications. https://industeel.arcelormittal.com/fichier/mars-protection-grades/
Aurum Security, (2017). An explosion in the Diplomatic District of Kabul. https://www.aurum-security.de/en/about-us/news/372-an-explosion-in-the-diplomatic-district-of-kabul
Aurum Security. Example of a regular not tested Armored vehicles. http://www.aurum-security.de/en/our-cars/short-summary.html
Aurum Security. Level of Ballistic Protection. http://www.aurum-security.de/en/us-and-them/the-level-of-ballistic-protection
Aurum Security. Protection Levels B1-B7 vs VPAM. http://www.aurum-security.de/en/standards/protection-levels-b1-b7-and-vpam.html
Aurum Security, (2017). The explosion in the capital of Afghanistan. https://www.aurum-security.de/en/about-us/news/371-the-explosion-in-the-capital-of-afghanistan
Bürger, D., Faria, A.R., Almeida, S.F.M., Melo, F.C.L., & Donadon, M.V. (2012). Ballistic impact simulation of an armour-piercing projectile on hybrid ceramic/fiber reinforced composite armours. International Journal of Impact Engineering, 43, 63-77. https://doi.org/10.1016/j.ijimpeng.2011.12.001
Crouch I.G. (2017). Introduction to Armour Materials. In: Crouch I.G., editor. The Science of Armour Materials. Duxford: Woodhead Publishing
DEW Engineering and Development. Levels of Protection. https://dewpd.com/ballistic-door-panels/threat-levels
DEW Engineering and Development. Technical Ceramics. https://dewpd.com/about
Dunstan, S. (1984). Flak Jackets: 20th Century Military Body Armour. London: Osprey Publishing Ltd.
Göde, E. (2020). A New Ceramic Based Detachable Modular External Vehicle Armor Design. [Unpublished Doctoral Dissertation]. Eskisehir Osmangazi University
Grujicic, M., Pandurangan, B., & d’Entremont, B. (2012). The role of adhesive in the ballistic/structural performance of ceramic/polymer–matrix composite hybrid armor. Materials&Design, 41, 380-393. https://doi.org/10.1016/j.matdes.2012.05.023
Kamel, H. (2017). Studying the trade-off between protection and mobility of armored vehicles. ASME 2017 International Mechanical Engineering Congress & Exposition (p. 1-12)
Kaufmann, C., Cronin, D., Worswick, M., Pageau, G., & and Beth, A. (2003). Influence of material properties on the ballistic performance of ceramics for personal body armour. Shock and Vibration, 10(1), 51-58. https://doi.org/10.1155/2003/357637
Khan, M.K., & Iqbal, M.A. (2022). Failure and fragmentation of ceramic target with varying geometric configuration under ballistic impact. Ceramics International, 48(18), 26147-26167. https://doi.org/10.1016/j.ceramint.2022.05.297
Lopez-Puente, J., Arias, A., Zaera, R., & Navarro, C. (2005). The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study. International Journal of Impact
Engineering, 32(1-4), 321-336. https://doi.org/10.1016/j.ijimpeng.2005.07.014
Makine ve Kimya Endüstrisi Inc. 7.62 mm x 51 Zırh Delici Ürün Detayı. https://urunler.mke.gov.tr/Urunler/7.62-mm-x-51-Z%C4%B1rh-Delici/30/260
Marx, J., Portanova, M., & Rabiei, A. (2018). A study on blast and fragment resistance of composite metal foams through experimental and modeling approaches. Composite Structures, 194, 652-661. https://doi.org/10.1016/j.compstruct.2018.03.075
Plasan. Armored Mercedes-Benz Sprinter Van. https://vehicles.plasan.com/car/armored-mercedes-benz-sprinter-van/
Roberson, C.J. (1995). Ceramic materials and their use in lightweight armour systems. Lightweight Armour System Symposium. Royal Military College of Science, Cranfield, England
Rolston, R.F., Bodine, E., & Dunleavy, J. (1968). Breakthrough in armor. Space/Aeronautics, 55-63
Solms-Laubach, V.F. (2014). Diplomatenautos nicht kugelsicher. https://www.bild.de/politik/inland/dienstwagen/panzerung-deutscherbotschaftsfahrzeuge-nicht-kugelsicher-36866334.bild.html
Stewart, M.G., & Netherton, M.D. (2020). Statistical variability and fragility assessment of ballistic perforation of steel plates for 7.62 mm AP ammunition. Defence Technology, 16(3), 503-513. https://doi.org/10.1016/j.dt.2019.10.013
Teoman, A., Öğünç, G.İ., Göde, E., Tonbul, K., & Özer, V. (2022). Sivil araç zırhlama. K.Leblebicioğlu, R.O.Yıldırım, M.İ.Gökler, E. Ciğercioğlu, G.O.Özgen, A.G.Uluyurt (Eds.), In proceedings of SAVTEK 2022, 10. Savunma Teknolojileri Kongresi (547-557). Ankara.
Türk Savunma Sanayii Ürün Kataloğu. Gizli Zırhlı Pickup. https://www.ssb.gov.tr/urunkatalog/tr/36/#zoom=z
Türk Savunma Sanayii Ürün Kataloğu. Taktik Tekerlekli Araçlar. https://www.ssb.gov.tr/urunkatalog/tr/35/
United States Goverment Accountability Office, (2017). Armored Commercial Vehicles. https://www.gao.gov/assets/690/685184.pdf
Universal Defense for Military Equipment. Armored Cars. http://www.universal-defense.com/UD/Armory_files/6_Armoured_Cars.pdf
Wikipedia, (2023). Armored Car (VIP). https://en.wikipedia.org/wiki/Armored_car_(VIP)
Yogiata, S., & Kriti, K. Armoring The civilian. https://counteriedreport.com/articles/armoring-the-civilian/
Melih Cemal Kushan
ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ, MÜHENDİSLİK-MİMARLIK FAKÜLTESİ, UÇAK MÜHENDİSLİĞİ BÖLÜMÜ, UÇAK MÜHENDİSLİĞİ ANABİLİM DALI0000-0002-9427-6192Türkiye
A. Teoman, E. Göde, K. Tonbul, H. İ. Şeker, ve M. C. Kushan, “SİVİL (GİZLİ ZIRHLI) ARAÇ ZIRHLAMA VE SERAMİK KOMPOZİT ZIRH UYGULAMALARI”, Savunma Bilimleri Dergisi, c. 2, sy. 43, ss. 473–492, 2023, doi: 10.17134/khosbd.1248358.