Araştırma Makalesi
BibTex RIS Kaynak Göster

Forecasting Sustainability Reports with Financial Performance Indicators using Random Forest for Feature Selection and Gradient Boosting for Learning

Yıl 2024, Cilt: 20 Sayı: 2, 279 - 302, 01.11.2024
https://doi.org/10.17134/khosbd.1492365

Öz

Dünyadaki aşırı nüfus artışı, iklim değişikliği, biyoçeşitliliğin kaybı ve kaynak kıtlığı gibi sorunlar, yıllar geçtikçe şirketlerde küresel farkındalığın artmasına neden olmuştur. Son dönemde şirketler mevcut ekonomi modelleri yerine sürdürülebilir modelleri tercih etmeye başladı. Bunun sonucunda sadece ekonomik rapor hazırlamak yerine sosyal ve çevresel raporları da içeren bir sürdürülebilirlik raporu hazırlamaya başladılar. Sürdürülebilir kalkınmanın hedeflerine ulaşmasında yeni bir yaklaşım olan döngüsel ekonomi modelinin son yıllardaki verileri sürdürülebilirlik raporları aracılığıyla da takip edilebiliyor. Araştırmalar, sürdürülebilirliğe önem veren şirketlerin yatırımcılar tarafından değerli görüldüğünü ve ülkelerin borsalarında sürdürülebilirlik endekslerinin oluşturulduğunu gösteriyor. Bu durum sürdürülebilirlik raporlamasının veya döngüsel ekonominin finansal performans üzerindeki etkisini inceleyen çalışmaların sayısını artırdı. Firmalar potansiyel yatırımcının dikkatini çekebilmek adına sürdürülebilirlik endekslerine dahil olmak istiyor. Bu çalışmada XUSRD'deki şirketlerin finansal performansına ilişkin zaman serisi verileri kullanılmıştır. Öte yandan, literatürdeki istatistiksel analizlerin aksine, şirketlerin XUSRD'de yer alıp almayacağını tahmin etmek için, özellik seçimi için rastgele orman ve öğrenme için gradyan artırma olmak üzere iki makine öğrenmesi yönteminin bir kombinasyonu kullanılıyor. Ayrıca veri kıtlığı sorununun aşılması amacıyla borsa endekslerinin tahmininde kanıtlanmış bir veri büyütme tekniği olan sütun bazında rastgele karıştırma yöntemi kullanılmıştır. Sonuçlar, rastgele orman ve gradyan artırma kombinasyonunun %94,74'lük bir test doğruluğuna ulaştığını ve k-en yakın komşu, rastgele orman, karar ağacı, destek vektörü, saf Bayes sınıflandırıcıları gibi en gelişmiş modellerden daha iyi performans gösterdiğini göstermektedir. Bu çalışmada karşılaştırma amacıyla kullanılmıştır.

Kaynakça

  • [1] Huang, K., Sim, N., & Zhao, H. (2020). Corporate social responsibility, corporate financial performance and the confounding effects of economic fluctuations: A metaanalysis. International Review of Financial Analysis, 70, 101504. https://doi.org/10.1016/j.irfa.2020.101504
  • [2] Alatawi, I. A., Ntim, C. G., Zras, A., & Elmagrhi, M. H. (2023). CSR, financial and non-financial performance in the tourism sector: A systematic literature review and future research agenda. International Review of Financial Analysis, 102734. https://doi.org/10.1016/j.irfa.2023.102734
  • [3] OECD(2021).https://www.oecd.org/cfe/ regionaldevelopment/Circular_Economy_Flyer.pdf
  • [4] Ellen Macarthur Foundation. (2010). Toward the Circular Economy.
  • [5] Remo-Diez, N., Mendaña-Cuervo, C., & Arenas-Parra, M. (2023). Exploring the asymmetric impact of sustainability reporting on financial performance in the utilities sector: A longitudinal comparative analysis. Utilities Policy, 84, 101650. https://doi.org/10.1016/j.jup.2023.101650
  • [7] European Commission. (2015). Closing the Loop- An EU Action Plan for the Circular Economy. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels. [8] Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, conservation and recycling, 127, 221-232. https://doi.org/10.1016/j.resconrec.2017.09. 005 [9] Reike, D., Vermeulen, W. J., & Witjes, S. (2018). The circular economy: new or refurbished as CE 3.0?-exploring controversies in the conceptualization of the circular economy through a focus on history and resource value retention options. Resources, conservation and recycling, 135, 246-264. https://doi.org/10.1016/j.resconrec.2017.08. 027 [10]Uhrenholt, J. N., Kristensen, J. H., Rincón, M. C., Jensen, S. F., & Waehrens, B. V. (2022). Circular economy: Factors affecting the financial performance of product take-back systems. Journal of Cleaner Production, 335, 130319. https://doi.org/10.1016/j.jclepro.2021.13031 9 [11]Rodríguez-González, R. M., Maldonado-Guzman, G., Madrid-Guijarro, A., & Garza-Reyes, J. A. (2022). Does circular economy affect financial performance? The mediating role of sustainable supply chain management in the automotive industry. Journal of Cleaner Production, 379, 134670. https://doi.org/10.1016/j.jclepro.2022.13467 0 [12]Orsini, L. P., Leardini, C., Danesi, L., Guerrini, A., & Frison, N. (2023). Circular economy in the water and wastewater sector: Tariff impact and financial performance of SMARTechs. Utilities Policy, 83, 101593. https://doi.org/10.1016/j.jup.2023.101593 [13]Amankwah-Amoah, J. (2020). Stepping up and stepping out of COVID-19: New challenges for environmental sustainability policies in the global airline industry. Journal of Cleaner Production, 271, 123000. https://doi.org/10.1016/j.jclepro.2020.123000
  • [14]Bruntland, G.H. (1987). Our Common Future, Report of The World Commission On Environment And Development. http://www.un-documents.net/ourcommonfuture.pdf
  • [15]Shin, J., Moon, J. J., & Kang, J. (2023). Where does ESG pay? The role of national culture in moderating the relationship between ESG performance and financial performance. International Business Review, 32(3), 102071. https://doi.org/10.1016/j.ibusrev.2022.102071
  • [16]Signitzer, B., & Prexl, A. (2007). Corporate sustainability communications: Aspects of theory and professionalization. Journal of Public Relations Research, 20(1), 1-19. https://doi.org/10.1080/10627260701726996
  • [17]Lee, M. T., & Raschke, R. L. (2023). Stakeholder legitimacy in firm greening and financial performance: What about greenwashing temptations? Journal of Business Research, 155, 113393. https://doi.org/10.1016/j.jbusres.2022.11339 3 [18]Chiong, P.T. (2010). An examination of corporate sustainability disclosure level and its impact on financial performance. Doctor of Philosophy Multimedia University. [19]Welter, K. A. (2011). A study of publicly-held US corporations on the effects of sustainability measures on financial performance, utilizing a modified regression discontinuity model. Lawrence Technological University. [20]Elkington, J. (1997). Cannibals with forks: The triple bottom line of 21st century business, Oxford: Capstone Publishing.https://doi.org/10.1002/tqem.331 0080106 [21]Elkington, J. (2004). Enter the triple bottom line. http://www.johnelkington.com/archive/TBL -elkington-chapter.pdf [22]Herzig, C., & Schaltegger, S. (2011). Corporate sustainability reporting. Sustainability communication: Interdisciplinary perspectives and theoretical foundation, 151-169. https://doi.org/10.1007/978-94-007-1697- 1_14 [23]Albertini, E. (2013). Does environmental management improve financial performance? A meta-analytical review. Organization & Environment, 26(4), 431-457. https://doi.org/10.1177/1086026613510301 [24]Haffar, M., & Searcy, C. (2017). Classification of trade-offs encountered in the practice of corporate sustainability. Journal of business ethics, 140, 495-522. https://doi.org/10.1007/s10551-015-2678-1 [25]Gao, Y. (2011). CSR in an emerging country: a content analysis of CSR reports of listed companies. Baltic Journal of management, 6(2), 263-291. https://doi.org/10.1108/17465261111131848 [26]Orsato, R. J., Garcia, A., Mendes-DaSilva, W., Simonetti, R., & Monzoni, M. (2015). Sustainability indexes: why join in? A study of the 'Corporate Sustainability Index (ISE)'in Brazil. Journal of Cleaner Production, 96, 161-170. https://doi.org/10.1016/j.jclepro.2014.10.071 [27]Vardari, D. S. L., & Gashi, R. (2020). The impact of corporate sustainability index on BIST sustainability index. European Journal of Sustainable Development, 9(2), 375-390. https://doi.org/10.14207/ejsd.2020.v9n2p37 5
  • [28]Mumcu, A. Y., & Ufacık, O. E. (2016). A research on sustainability indices: BIST Sustainability Index. Social and economic perspectives on sustainability, 264-269.
  • [29]Yilmaz, M. K., Aksoy, M., & Tatoglu, E. (2020). Does the stock market value inclusion in a sustainability index? Evidence from Borsa Istanbul. Sustainability, 12(2), 483. https://doi.org/10.3390/su12020483
  • [30]Reddy, K & Gordon, L.W. (2010). The effect of sustainability reporting on financial performance: An empirical study using listed companies. Journal of Asia Entrepreneurship and Sustainability, 6(2), 19-42.
  • [31]Burhan, A. H. N., & Rahmanti, W. (2012). The impact of sustainability reporting on company performance. Journal of Economics, Business, & Accountancy Ventura, 15(2), 257-272. https://doi.org/10.14414/jebav.v15i2.79
  • [32]DasGupta, R. (2022). Financial performance shortfall, ESG controversies, and ESG performance: Evidence from firms around the world. Finance Research Letters, 46, 102487. https://doi.org/10.1016/j.frl.2021.102487
  • [33]Saini, N., Antil, A., Gunasekaran, A., Malik, K., & Balakumar, S. (2022). Environment-social-governance disclosures nexus between financial performance: A sustainable value chain approach. Resources, Conservation and Recycling, 186, 106571. https://doi.org/10.1016/j.resconrec.2022.106 571
  • [34]Comincioli, N., Poddi, L., & Vergalli, S. (2012). Corporate social responsibility and firms' performance: A stratigraphical analysis. Available at SSRN 2132202. https://doi.org/10.2139/ssrn.2175513
  • [35]Kuzey, C., & Uyar, A. (2017). Determinants of sustainability reporting and its impact on firm value: Evidence from the emerging market of Turkey. Journal of cleaner production, 143, 27-39. https://doi.org/10.1016/j.jclepro.2016.12.153
  • [36]Kim, J., & Kim, J. (2018). Corporate sustainability management and its market benefits. Sustainability, 10(5), 1455. https://doi.org/10.3390/su10051455
  • [37]Güngör, N. (2023). Sürdürülebilirlik Raporlarında Döngüsel Ekonomi: Borsa İstanbul'da Bir Araştırma. Denetim ve Güvence Hizmetleri Dergisi, 3(1), 36-47.
  • [38]Stewart, R., & Niero, M. (2018). Circular economy in corporate sustainability strategies: A review of corporate sustainability reports in the fast‐moving consumer goods sector. Business Strategy and the Environment, 27(7), 1005-1022. https://doi.org/10.1002/bse.2048
  • [39]Nilashi, M., Rupani, P. F., Rupani, M. M., Kamyab, H., Shao, W., Ahmadi, H., ... & Aljojo, N. (2019). Measuring sustainability through ecological sustainability and human sustainability: A machine learning approach. Journal of Cleaner Production, 240, 118162. https://doi.org/10.1016/j.jclepro.2019.118162
  • [40]Gorenc Novak, M., & Velušček, D. (2016). Prediction of stock price movement based on daily high prices. Quantitative Finance, 16(5), 793-826. https://doi.org/10.1080/14697688.2015.1070 960
  • [41]Barak, S., Arjmand, A., & Ortobelli, S. (2017). Fusion of multiple diverse predictors in stock market. Information Fusion, 36, 90-102. https://doi.org/10.1016/j.inffus.2016.11.006
  • [42]Hajek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of financial statement fraud-A comparative study of machine learning methods. Knowledge-Based Systems, 128, 139-152. https://doi.org/10.1016/j.knosys.2017.05.001
  • [43]Chen, Y. C., & Huang, W. C. (2021). Constructing a stock-price forecast CNN model with gold and crude oil indicators. Applied Soft Computing, 112, 107760. https://doi.org/10.1016/j.asoc.2021.107760
  • [44]Kocaarslan, B., & Soytas, U. (2023). The role of major markets in predicting the U.S. municipal green bond market performance: New evidence from machine learning models. Technological Forecasting and Social Change, 196, 122820. https://doi.org/10.1016/j.techfore.2023.122820
  • [45]Nayak, R. K., Mishra, D., & Rath, A. K. (2015). A Naïve SVM-KNN based stock market trend reversal analysis for Indian benchmark indices. Applied Soft Computing, 35, 670-680. https://doi.org/10.1016/j.asoc.2015.06.040
  • [46]Chen, Y., & Hao, Y. (2017). A feature weighted support vector machine and Knearest neighbor algorithm for stock market indices prediction. Expert Systems with Applications, 80, 340-355. https://doi.org/10.1016/j.eswa.2017.02.044
  • [47]Ayala, J., García-Torres, M., Noguera, J. L. V., Gómez-Vela, F., & Divina, F. (2021). Technical analysis strategy optimization using a machine learning approach in stock market indices. Knowledge-Based Systems, 225, 107119.https://doi.org/10.1016/j.knosys.202 1.107119
  • [48]Park, H. J., Kim, Y., & Kim, H. Y. (2022). Stock market forecasting using a multi-task approach integrating long shortterm memory and the random forest framework. Applied Soft Computing, 114, 108106. https://doi.org/10.1016/j.asoc.2021.108106
  • [49]Kim, H. Y., & Won, C. H. (2018). Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models. Expert Systems with Applications, 103, 25-37. https://doi.org/10.1016/j.eswa.2018.03.002
  • [50]Ince, H., & Trafalis, T. B. (2017). A hybrid forecasting model for stock market prediction. Economic Computation & Economic Cybernetics Studies & Research, 51(3).
  • [51]Li, Z., & Tam, V. (2017, November). A comparative study of a recurrent neural network and support vector machine for predicting price movements of stocks of different volatilites. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1-8). IEEE. https://doi.org/10.1109/SSCI.2017.8285319
  • [52]Eachempati, P., Srivastava, P. R., Kumar, A., Tan, K. H., & Gupta, S. (2021). Validating the impact of accounting disclosures on stock market: A deep neural network approach. Technological Forecasting and Social Change, 170, 120903. https://doi.org/10.1016/j.techfore.2021.1209 03
  • [53]Çelik, T. B., İcan, Ö., & Bulut, E. (2023). Extending machine learning prediction capabilities by explainable AI in financial time series prediction. Applied Soft Computing, 132, 109876. https://doi.org/10.1016/j.asoc.2022.109876
  • [54]Orlitzky, M., Schmidt, F. L., & Rynes, S. L. (2003). Corporate social and financial performance: A meta-analysis. Organization studies, 24(3), 403-441. https://doi.org/10.1177/0170840603024003910
  • [55]Lu, W., Chau, K. W., Wang, H., & Pan, W. (2014). A decade's debate on the nexus between corporate social and corporate financial performance: a critical review of empirical studies 2002-2011. Journal of cleaner production, 79, 195-206. https://doi.org/10.1016/j.jclepro.2014.04.072
  • [56]Kang, C., Germann, F., & Grewal, R. (2016). Washing away your sins? Corporate social responsibility, corporate social irresponsibility, and firm performance. Journal of Marketing, 80(2), 59-79. https://doi.org/10.1509/jm.15.0324
  • [57]Buallay, A., El Khoury, R., & Hamdan, A. (2021). Sustainability reporting in smart cities: A multidimensional performance measures. Cities, 119, 103397. https://doi.org/10.1016/j.cities.2021.103397
  • [58]Safari, K., Njoka, C., & Munkwa, M. G. (2021). Financial literacy and personal retirement planning: a socioeconomic approach. Journal of Business and SocioEconomic Development, 1(2), 121-134. https://doi.org/10.1108/JBSED-04-2021- 0052
  • [59]Vitezić, N., Vuko, T., & Mörec, B. (2012). Does financial performance have an impact on corporate sustainability and CSR disclosure? A case of Croatian companies. Journal of Business Management, 5(Special Edition).
  • [60]Dağıstanlı, H. A., & Çelik, İ. (2023). Sürdürülebilirlik Raporlaması ve Firma Performansı: BIST Sürdürülebilirlik Endeksi Üzerine Bir Uygulama. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (76), 1- 16. https://doi.org/10.51290/dpusbe.1153330
  • [61]Sariyer, G., & Taşkın, D. (2022). Clustering of Firms Based on Environmental, Social, and Governance Ratings: Evidence from BIST Sustainability Index. Borsa Istanbul Review.https://doi.org/10.1016/j.bir.2022.10.009
  • [62]Duda, R. O., & Hart, P. E. (2012). Pattern classification. John Wiley & Sons.
  • [63]Chollet, F. (2018). Deep learning mit python und keras: das praxis-handbuch vom entwickler der keras-bibliothek. MITPVerlags GmbH & Co. KG.
  • [64]Zhang, J., Rong, W., Liang, Q., Sun, H., & Xiong, Z. (2017). Data augmentation based stock trend prediction using selforganising map. In Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings, Part II 24 (pp. 903-912). Springer International Publishing. https://doi.org/10.1007/978-3- 319-70096-0_92
  • [65]Teng, X., Wang, T., Zhang, X., Lan, L., & Luo, Z. (2020). Enhancing stock price trend prediction via a time-sensitive data augmentation method. Complexity, 2020, 1- 8. https://doi.org/10.1155/2020/6737951
  • [66]Lee, S. W., & Kim, H. Y. (2020). Stock market forecasting with super-high dimensional time-series data using ConvLSTM, trend sampling, and specialized data augmentation. expert systems with applications, 161, 113704. https://doi.org/10.1016/j.eswa.2020.113704
  • [67]Ertel, W. (2018). Introduction to artificial intelligence. Springer. https://doi.org/10.1007/978-3-319-58487-4
  • [68]Dinov, I. D. (2018). Data science and predictive analytics. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319- 72347-1 [69]Koutroumbas, K., & Theodoridis, S. (2008). Pattern recognition. Academic Press.
  • [70]Kubat, M., & Kubat, J. A. (2017). An introduction to machine learning (Vol. 2, pp. 321-329). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-63913-0
  • [71]Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
  • [72]Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232. https://doi.org/10.1214/aos/1013203451

Forecasting Sustainability Reports with Financial Performance Indicators using Random Forest for Feature Selection and Gradient Boosting for Learning

Yıl 2024, Cilt: 20 Sayı: 2, 279 - 302, 01.11.2024
https://doi.org/10.17134/khosbd.1492365

Öz

Problems such as excessive population growth, climate change, loss of biodiversity and resource scarcity in the world have led to an increase in global awareness in companies over the years. Lately companies have started to prefer sustainable models instead of existing economy models. As a result, they have started to prepare a sustainability report that includes social and environmental reports instead of just preparing an economic report. In recent years, the data of the circular economy model, which is a new approach for sustainable development to reach its goals, can also be followed through sustainability reports. Research shows that companies that attach importance to sustainability are seen as valuable by investors and sustainability indices are created in the stock markets of countries. This situation has increased the number of studies examining the impact of sustainability reporting or circular economy on financial performance. Firms want to be included in the sustainability indices in order to attract the attention of the potential investor. In this study, time series data of financial performance of companies in XUSRD are used. On the other hand, contrary to the statistical analyses in the literature, to predict whether companies will take part in XUSRD, a combination of two machine learning methods, namely random forest for feature selection and gradient boosting for learning, is used. In addition, to overcome the problem of data scarcity, the column-wise random shuffling method, which is a proven data augmentation technique in predicting stock market indices, has been used. The results show that the combination of random forest and gradient boosting reaches a test accuracy of 94.74% and outperforms state-of-the art models, namely, k-nearest neighbor, random forest, decision tree, support vector, naive Bayes classifiers that have been used in this study for comparison.

Kaynakça

  • [1] Huang, K., Sim, N., & Zhao, H. (2020). Corporate social responsibility, corporate financial performance and the confounding effects of economic fluctuations: A metaanalysis. International Review of Financial Analysis, 70, 101504. https://doi.org/10.1016/j.irfa.2020.101504
  • [2] Alatawi, I. A., Ntim, C. G., Zras, A., & Elmagrhi, M. H. (2023). CSR, financial and non-financial performance in the tourism sector: A systematic literature review and future research agenda. International Review of Financial Analysis, 102734. https://doi.org/10.1016/j.irfa.2023.102734
  • [3] OECD(2021).https://www.oecd.org/cfe/ regionaldevelopment/Circular_Economy_Flyer.pdf
  • [4] Ellen Macarthur Foundation. (2010). Toward the Circular Economy.
  • [5] Remo-Diez, N., Mendaña-Cuervo, C., & Arenas-Parra, M. (2023). Exploring the asymmetric impact of sustainability reporting on financial performance in the utilities sector: A longitudinal comparative analysis. Utilities Policy, 84, 101650. https://doi.org/10.1016/j.jup.2023.101650
  • [7] European Commission. (2015). Closing the Loop- An EU Action Plan for the Circular Economy. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels. [8] Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, conservation and recycling, 127, 221-232. https://doi.org/10.1016/j.resconrec.2017.09. 005 [9] Reike, D., Vermeulen, W. J., & Witjes, S. (2018). The circular economy: new or refurbished as CE 3.0?-exploring controversies in the conceptualization of the circular economy through a focus on history and resource value retention options. Resources, conservation and recycling, 135, 246-264. https://doi.org/10.1016/j.resconrec.2017.08. 027 [10]Uhrenholt, J. N., Kristensen, J. H., Rincón, M. C., Jensen, S. F., & Waehrens, B. V. (2022). Circular economy: Factors affecting the financial performance of product take-back systems. Journal of Cleaner Production, 335, 130319. https://doi.org/10.1016/j.jclepro.2021.13031 9 [11]Rodríguez-González, R. M., Maldonado-Guzman, G., Madrid-Guijarro, A., & Garza-Reyes, J. A. (2022). Does circular economy affect financial performance? The mediating role of sustainable supply chain management in the automotive industry. Journal of Cleaner Production, 379, 134670. https://doi.org/10.1016/j.jclepro.2022.13467 0 [12]Orsini, L. P., Leardini, C., Danesi, L., Guerrini, A., & Frison, N. (2023). Circular economy in the water and wastewater sector: Tariff impact and financial performance of SMARTechs. Utilities Policy, 83, 101593. https://doi.org/10.1016/j.jup.2023.101593 [13]Amankwah-Amoah, J. (2020). Stepping up and stepping out of COVID-19: New challenges for environmental sustainability policies in the global airline industry. Journal of Cleaner Production, 271, 123000. https://doi.org/10.1016/j.jclepro.2020.123000
  • [14]Bruntland, G.H. (1987). Our Common Future, Report of The World Commission On Environment And Development. http://www.un-documents.net/ourcommonfuture.pdf
  • [15]Shin, J., Moon, J. J., & Kang, J. (2023). Where does ESG pay? The role of national culture in moderating the relationship between ESG performance and financial performance. International Business Review, 32(3), 102071. https://doi.org/10.1016/j.ibusrev.2022.102071
  • [16]Signitzer, B., & Prexl, A. (2007). Corporate sustainability communications: Aspects of theory and professionalization. Journal of Public Relations Research, 20(1), 1-19. https://doi.org/10.1080/10627260701726996
  • [17]Lee, M. T., & Raschke, R. L. (2023). Stakeholder legitimacy in firm greening and financial performance: What about greenwashing temptations? Journal of Business Research, 155, 113393. https://doi.org/10.1016/j.jbusres.2022.11339 3 [18]Chiong, P.T. (2010). An examination of corporate sustainability disclosure level and its impact on financial performance. Doctor of Philosophy Multimedia University. [19]Welter, K. A. (2011). A study of publicly-held US corporations on the effects of sustainability measures on financial performance, utilizing a modified regression discontinuity model. Lawrence Technological University. [20]Elkington, J. (1997). Cannibals with forks: The triple bottom line of 21st century business, Oxford: Capstone Publishing.https://doi.org/10.1002/tqem.331 0080106 [21]Elkington, J. (2004). Enter the triple bottom line. http://www.johnelkington.com/archive/TBL -elkington-chapter.pdf [22]Herzig, C., & Schaltegger, S. (2011). Corporate sustainability reporting. Sustainability communication: Interdisciplinary perspectives and theoretical foundation, 151-169. https://doi.org/10.1007/978-94-007-1697- 1_14 [23]Albertini, E. (2013). Does environmental management improve financial performance? A meta-analytical review. Organization & Environment, 26(4), 431-457. https://doi.org/10.1177/1086026613510301 [24]Haffar, M., & Searcy, C. (2017). Classification of trade-offs encountered in the practice of corporate sustainability. Journal of business ethics, 140, 495-522. https://doi.org/10.1007/s10551-015-2678-1 [25]Gao, Y. (2011). CSR in an emerging country: a content analysis of CSR reports of listed companies. Baltic Journal of management, 6(2), 263-291. https://doi.org/10.1108/17465261111131848 [26]Orsato, R. J., Garcia, A., Mendes-DaSilva, W., Simonetti, R., & Monzoni, M. (2015). Sustainability indexes: why join in? A study of the 'Corporate Sustainability Index (ISE)'in Brazil. Journal of Cleaner Production, 96, 161-170. https://doi.org/10.1016/j.jclepro.2014.10.071 [27]Vardari, D. S. L., & Gashi, R. (2020). The impact of corporate sustainability index on BIST sustainability index. European Journal of Sustainable Development, 9(2), 375-390. https://doi.org/10.14207/ejsd.2020.v9n2p37 5
  • [28]Mumcu, A. Y., & Ufacık, O. E. (2016). A research on sustainability indices: BIST Sustainability Index. Social and economic perspectives on sustainability, 264-269.
  • [29]Yilmaz, M. K., Aksoy, M., & Tatoglu, E. (2020). Does the stock market value inclusion in a sustainability index? Evidence from Borsa Istanbul. Sustainability, 12(2), 483. https://doi.org/10.3390/su12020483
  • [30]Reddy, K & Gordon, L.W. (2010). The effect of sustainability reporting on financial performance: An empirical study using listed companies. Journal of Asia Entrepreneurship and Sustainability, 6(2), 19-42.
  • [31]Burhan, A. H. N., & Rahmanti, W. (2012). The impact of sustainability reporting on company performance. Journal of Economics, Business, & Accountancy Ventura, 15(2), 257-272. https://doi.org/10.14414/jebav.v15i2.79
  • [32]DasGupta, R. (2022). Financial performance shortfall, ESG controversies, and ESG performance: Evidence from firms around the world. Finance Research Letters, 46, 102487. https://doi.org/10.1016/j.frl.2021.102487
  • [33]Saini, N., Antil, A., Gunasekaran, A., Malik, K., & Balakumar, S. (2022). Environment-social-governance disclosures nexus between financial performance: A sustainable value chain approach. Resources, Conservation and Recycling, 186, 106571. https://doi.org/10.1016/j.resconrec.2022.106 571
  • [34]Comincioli, N., Poddi, L., & Vergalli, S. (2012). Corporate social responsibility and firms' performance: A stratigraphical analysis. Available at SSRN 2132202. https://doi.org/10.2139/ssrn.2175513
  • [35]Kuzey, C., & Uyar, A. (2017). Determinants of sustainability reporting and its impact on firm value: Evidence from the emerging market of Turkey. Journal of cleaner production, 143, 27-39. https://doi.org/10.1016/j.jclepro.2016.12.153
  • [36]Kim, J., & Kim, J. (2018). Corporate sustainability management and its market benefits. Sustainability, 10(5), 1455. https://doi.org/10.3390/su10051455
  • [37]Güngör, N. (2023). Sürdürülebilirlik Raporlarında Döngüsel Ekonomi: Borsa İstanbul'da Bir Araştırma. Denetim ve Güvence Hizmetleri Dergisi, 3(1), 36-47.
  • [38]Stewart, R., & Niero, M. (2018). Circular economy in corporate sustainability strategies: A review of corporate sustainability reports in the fast‐moving consumer goods sector. Business Strategy and the Environment, 27(7), 1005-1022. https://doi.org/10.1002/bse.2048
  • [39]Nilashi, M., Rupani, P. F., Rupani, M. M., Kamyab, H., Shao, W., Ahmadi, H., ... & Aljojo, N. (2019). Measuring sustainability through ecological sustainability and human sustainability: A machine learning approach. Journal of Cleaner Production, 240, 118162. https://doi.org/10.1016/j.jclepro.2019.118162
  • [40]Gorenc Novak, M., & Velušček, D. (2016). Prediction of stock price movement based on daily high prices. Quantitative Finance, 16(5), 793-826. https://doi.org/10.1080/14697688.2015.1070 960
  • [41]Barak, S., Arjmand, A., & Ortobelli, S. (2017). Fusion of multiple diverse predictors in stock market. Information Fusion, 36, 90-102. https://doi.org/10.1016/j.inffus.2016.11.006
  • [42]Hajek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of financial statement fraud-A comparative study of machine learning methods. Knowledge-Based Systems, 128, 139-152. https://doi.org/10.1016/j.knosys.2017.05.001
  • [43]Chen, Y. C., & Huang, W. C. (2021). Constructing a stock-price forecast CNN model with gold and crude oil indicators. Applied Soft Computing, 112, 107760. https://doi.org/10.1016/j.asoc.2021.107760
  • [44]Kocaarslan, B., & Soytas, U. (2023). The role of major markets in predicting the U.S. municipal green bond market performance: New evidence from machine learning models. Technological Forecasting and Social Change, 196, 122820. https://doi.org/10.1016/j.techfore.2023.122820
  • [45]Nayak, R. K., Mishra, D., & Rath, A. K. (2015). A Naïve SVM-KNN based stock market trend reversal analysis for Indian benchmark indices. Applied Soft Computing, 35, 670-680. https://doi.org/10.1016/j.asoc.2015.06.040
  • [46]Chen, Y., & Hao, Y. (2017). A feature weighted support vector machine and Knearest neighbor algorithm for stock market indices prediction. Expert Systems with Applications, 80, 340-355. https://doi.org/10.1016/j.eswa.2017.02.044
  • [47]Ayala, J., García-Torres, M., Noguera, J. L. V., Gómez-Vela, F., & Divina, F. (2021). Technical analysis strategy optimization using a machine learning approach in stock market indices. Knowledge-Based Systems, 225, 107119.https://doi.org/10.1016/j.knosys.202 1.107119
  • [48]Park, H. J., Kim, Y., & Kim, H. Y. (2022). Stock market forecasting using a multi-task approach integrating long shortterm memory and the random forest framework. Applied Soft Computing, 114, 108106. https://doi.org/10.1016/j.asoc.2021.108106
  • [49]Kim, H. Y., & Won, C. H. (2018). Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models. Expert Systems with Applications, 103, 25-37. https://doi.org/10.1016/j.eswa.2018.03.002
  • [50]Ince, H., & Trafalis, T. B. (2017). A hybrid forecasting model for stock market prediction. Economic Computation & Economic Cybernetics Studies & Research, 51(3).
  • [51]Li, Z., & Tam, V. (2017, November). A comparative study of a recurrent neural network and support vector machine for predicting price movements of stocks of different volatilites. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1-8). IEEE. https://doi.org/10.1109/SSCI.2017.8285319
  • [52]Eachempati, P., Srivastava, P. R., Kumar, A., Tan, K. H., & Gupta, S. (2021). Validating the impact of accounting disclosures on stock market: A deep neural network approach. Technological Forecasting and Social Change, 170, 120903. https://doi.org/10.1016/j.techfore.2021.1209 03
  • [53]Çelik, T. B., İcan, Ö., & Bulut, E. (2023). Extending machine learning prediction capabilities by explainable AI in financial time series prediction. Applied Soft Computing, 132, 109876. https://doi.org/10.1016/j.asoc.2022.109876
  • [54]Orlitzky, M., Schmidt, F. L., & Rynes, S. L. (2003). Corporate social and financial performance: A meta-analysis. Organization studies, 24(3), 403-441. https://doi.org/10.1177/0170840603024003910
  • [55]Lu, W., Chau, K. W., Wang, H., & Pan, W. (2014). A decade's debate on the nexus between corporate social and corporate financial performance: a critical review of empirical studies 2002-2011. Journal of cleaner production, 79, 195-206. https://doi.org/10.1016/j.jclepro.2014.04.072
  • [56]Kang, C., Germann, F., & Grewal, R. (2016). Washing away your sins? Corporate social responsibility, corporate social irresponsibility, and firm performance. Journal of Marketing, 80(2), 59-79. https://doi.org/10.1509/jm.15.0324
  • [57]Buallay, A., El Khoury, R., & Hamdan, A. (2021). Sustainability reporting in smart cities: A multidimensional performance measures. Cities, 119, 103397. https://doi.org/10.1016/j.cities.2021.103397
  • [58]Safari, K., Njoka, C., & Munkwa, M. G. (2021). Financial literacy and personal retirement planning: a socioeconomic approach. Journal of Business and SocioEconomic Development, 1(2), 121-134. https://doi.org/10.1108/JBSED-04-2021- 0052
  • [59]Vitezić, N., Vuko, T., & Mörec, B. (2012). Does financial performance have an impact on corporate sustainability and CSR disclosure? A case of Croatian companies. Journal of Business Management, 5(Special Edition).
  • [60]Dağıstanlı, H. A., & Çelik, İ. (2023). Sürdürülebilirlik Raporlaması ve Firma Performansı: BIST Sürdürülebilirlik Endeksi Üzerine Bir Uygulama. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (76), 1- 16. https://doi.org/10.51290/dpusbe.1153330
  • [61]Sariyer, G., & Taşkın, D. (2022). Clustering of Firms Based on Environmental, Social, and Governance Ratings: Evidence from BIST Sustainability Index. Borsa Istanbul Review.https://doi.org/10.1016/j.bir.2022.10.009
  • [62]Duda, R. O., & Hart, P. E. (2012). Pattern classification. John Wiley & Sons.
  • [63]Chollet, F. (2018). Deep learning mit python und keras: das praxis-handbuch vom entwickler der keras-bibliothek. MITPVerlags GmbH & Co. KG.
  • [64]Zhang, J., Rong, W., Liang, Q., Sun, H., & Xiong, Z. (2017). Data augmentation based stock trend prediction using selforganising map. In Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings, Part II 24 (pp. 903-912). Springer International Publishing. https://doi.org/10.1007/978-3- 319-70096-0_92
  • [65]Teng, X., Wang, T., Zhang, X., Lan, L., & Luo, Z. (2020). Enhancing stock price trend prediction via a time-sensitive data augmentation method. Complexity, 2020, 1- 8. https://doi.org/10.1155/2020/6737951
  • [66]Lee, S. W., & Kim, H. Y. (2020). Stock market forecasting with super-high dimensional time-series data using ConvLSTM, trend sampling, and specialized data augmentation. expert systems with applications, 161, 113704. https://doi.org/10.1016/j.eswa.2020.113704
  • [67]Ertel, W. (2018). Introduction to artificial intelligence. Springer. https://doi.org/10.1007/978-3-319-58487-4
  • [68]Dinov, I. D. (2018). Data science and predictive analytics. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319- 72347-1 [69]Koutroumbas, K., & Theodoridis, S. (2008). Pattern recognition. Academic Press.
  • [70]Kubat, M., & Kubat, J. A. (2017). An introduction to machine learning (Vol. 2, pp. 321-329). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-63913-0
  • [71]Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
  • [72]Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232. https://doi.org/10.1214/aos/1013203451
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Teknoloji Yönetimi ve İş Modelleri, Üretim ve Endüstri Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Hakan Ayhan Dağıstanlı 0000-0003-2205-183X

Figen Özen 0000-0002-1759-0073

İlkay Saraçoğlu 0000-0003-3338-4912

Yayımlanma Tarihi 1 Kasım 2024
Gönderilme Tarihi 31 Mayıs 2024
Kabul Tarihi 27 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 20 Sayı: 2

Kaynak Göster

IEEE H. A. Dağıstanlı, F. Özen, ve İ. Saraçoğlu, “Forecasting Sustainability Reports with Financial Performance Indicators using Random Forest for Feature Selection and Gradient Boosting for Learning”, Savunma Bilimleri Dergisi, c. 20, sy. 2, ss. 279–302, 2024, doi: 10.17134/khosbd.1492365.