Research Article
BibTex RIS Cite

Farklı Barikat Tiplerinin Patlama Basıncına Karşı Koruma Kapasitesi

Year 2025, Issue: ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.17134/khosbd.1752718

Abstract

1. Özet
Endüstriyel kazalar veya terör saldırıları gibi çeşitli nedenlerle meydana gelen patlamaların oluşturduğu basınç dalgaları, koruma amaçlı kullanılan barikatlarla etkileşime girerek karmaşık basınç dağılımlarına ve bölgesel yük artışlarına yol açabilir. Bu durum, barikatların beklenen koruma rolünü tam olarak yerine getirememesine ve belirli bölgelerde risklerin artmasına neden olabilir. Bu kritik sorunu ele almak için, mevcut çalışmada çeşitli geometrik tasarımlara sahip yaygın barikat tiplerinin patlama basıncına karşı performansı ayrıntılı bir şekilde incelenmiştir. Bu araştırmada, deneysel doğrulama ile de desteklenen AUTODYN yazılımı kullanılarak sayısal bir analiz yöntemi kullanılmıştır. Yapılan analizler, barikatın geometrik formunun basınç dalgalarının yansıma, sönümleme ve iletim özelliklerini belirlemede kritik bir rol oynadığını ve dolayısıyla koruma seviyesini doğrudan etkilediğini açıkça ortaya koymuştur. Elde edilen veriler, patlama yüklerine maruz kalabilecek alanlarda can ve mal güvenliğini artıracak daha etkili ve optimize edilmiş barikat tasarımlarının geliştirilmesi için somut bir temel oluşturmaktadır.

References

  • [1] B. Ostraich, O. Sadot, O. Levintant, I. Anteby, and G. Ben-Dor, “A Method for Transforming a Full Computation of the Effects of a Complex-Explosion Scenario to a Simple Computation by ConWep,” Shock Waves, vol. 21, pp. 101–109, Feb. 2011, doi: 10.1007/s00193-011-0300-8.
  • [2] M. Şahin and C. Dereli, “Thermal Methods in Chemical Weapon Destruction and Computer Modeling of Plasma Technology,” Politeknik Dergisi, vol. 25, no. 4, pp. 1799–1808, 2022, doi: 10.2339/politeknik.1109423.
  • [3] Z. S. Tabatabaei, J. S. Volz, J. Baird, B. P. Gliha, and D. I. Keener, “Experimental and numerical analyses of long carbon fiber reinforced concrete panels exposed to blast loading,” Int. J. Impact Engng., vol. 57, pp. 70–80, 2013, doi: 10.1016/j.ijimpeng.2013.02.003.
  • [4] C. Dereli and M. Şahin, “Finite Element Analysis of a Real Man-made Disaster,” Savunma Bilimleri Dergisi, vol. 20, no. 2, pp. 223–236, 2024, doi: 10.17134/khosbd.1328695.
  • [5] Z. Wu, J. Guo, X. Yao, G. Chen, and X. Zhu, “Analysis of Explosion in Enclosure Based on Improved Method of Images,” Shock Waves, vol. 27, pp. 237–245, 2017, doi: 10.1007/s00193-016-0655-y.
  • [6] T. C. Chapman, T. A. Rose, and P. D. Smith, “Blast wave simulation using AUTODYN2D: A parametric study,” Int. J. Impact Engng., vol. 16, no. 5/6, pp. 777–787, 1995.
  • [7] J. Shin, A. S. Whittaker, D. Cormie, and W. Wilkinson, “Numerical modeling of close-in detonations of high explosives,” Eng. Struct., vol. 81, pp. 88–97, 2014, doi: 10.1016/j.engstruct.2014.09.022.
  • [8] T. A. Rose and P. D. Smith, “Influence of the principal geometrical parameters of straight city streets on positive and negative phase blast wave impulses,” Int. J. Impact Engng., vol. 27, no. 4, pp. 359–376, 2002.
  • [9] Y. Fan, L. Chen, Z. Li, H.-b. Xiang, and Q. Fang, “Modeling the blast load induced by a close-in explosion considering cylindrical charge parameters,” Def. Technol., vol. 24, pp. 83–108, 2023, doi: 10.1016/j.dt.2022.02.005.
  • [10] Y. Shi, H. Hao, and Z.-X. Li, “Numerical simulation of blast wave interaction with structure columns,” Shock Waves, vol. 17, pp. 113–133, 2007, doi: 10.1007/s00193-007-0099-5.
  • [11] A. Chester, R. Critchley, and R. Hazael, “A comparison of far-field explosive loads by a selection of current and emerging blast software,” Int. J. Prot. Struct., pp. 1–32, 2024, doi: 10.1177/20414196231223452.
  • [12] S. Sha, Z. Chen, X. Jiang, and J. Han, “Numerical investigations on blast wave attenuation by obstacles,” Procedia Eng., vol. 45, pp. 453–457, 2012, doi: 10.1016/j.proeng.2012.08.185.
  • [13] X. Guo et al., “A reinforced concrete shear wall building structure subjected to internal TNT explosions: Test results and numerical validation,” Int. J. Impact Engng., vol. 190, Art. no. 104950, 2024, doi: 10.1016/j.ijimpeng.2024.104950.
  • [14] Y. Sugiyama, M. Izumo, H. Ando, and A. Matsuo, “Two-dimensional explosion experiments examining the interaction between a blast wave and a sand hill,” Shock Waves, vol. 28, pp. 627–630, Feb. 2018, doi: 10.1007/s00193-018-0813-5.
  • [15] Structures to Resist the Effects of Accidental Explosions, UFC 3-340-02, Washington, DC, USA: U.S. Dept. of Defense, 2008. [Online]. Available: https://www.wbdg.org/FFC/DOD/UFC/ufc_3_340_02_2008_c5.pdf
  • [16] R. Xu, L. Chen, Q. Fang, Y. Zheng, Z. Li, and M. Cao, “Protective effects of gabion wall against blast waves from large TNT-equivalent explosions,” Eng. Struct., vol. 249, Art. no. 113389, 2021, doi: 10.1016/j.engstruct.2021.113389.
  • [17] G. F. C. Rogers and Y. R. Mayhew, Thermodynamic and Transport Properties of Fluids: SI Units, 4th ed. Oxford, UK: Blackwell, 1992.
  • [18] B. M. Dobratz and P. C. Crawford, “LLNL explosives handbook: Properties of chemical explosives and explosive simulants,” UCRL-52997, Lawrence Livermore National Laboratory, Jan. 31, 1985.
  • [19] G. S. Collins, “An Introduction to Hydrocode Modeling,” Unpublished lecture notes, The University of Arizona, Arizona, USA, 2002.
  • [20] M. Şahin and M. Yıldız, “Investigating the Effects of Remapping Method in Explosion,” Hacettepe J. Biol. Chem., vol. 52, no. 5, pp. 325–336, 2024, doi: 10.15671/hjbc.1573759.
  • [21] U.S. Army Corps of Engineers, “Barricades Standard Design,” DEF 149-30-01, Huntsville, AL, USA, Aug. 18, 2011.

Protection Capability of Different Types of Barricades Against Blast Pressure

Year 2025, Issue: ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.17134/khosbd.1752718

Abstract

Pressure waves created by explosions caused by various reasons such as industrial accidents or terrorist attacks interact with the barricades used for protective purposes and can lead to complex pressure distributions and regional load increases. This situation can cause the barricades not to fully fulfill their expected protective role and increase risks in certain regions. To address this critical issue, the present study conducted a detailed investigation of the performance of common barricade types with various geometric designs against blast pressure. This investigation employed a numerical analysis method using AUTODYN software, corroborated by experimental verification. The analyses performed clearly revealed that the geometric form of the barricade plays a critical role in determining the reflection, damping and transmission characteristics of the pressure waves and thus directly affects the level of protection. The obtained data provide a concrete basis for the development of more effective and optimized barricade designs that will increase the safety of life and property in areas that may be exposed to explosion loads.

References

  • [1] B. Ostraich, O. Sadot, O. Levintant, I. Anteby, and G. Ben-Dor, “A Method for Transforming a Full Computation of the Effects of a Complex-Explosion Scenario to a Simple Computation by ConWep,” Shock Waves, vol. 21, pp. 101–109, Feb. 2011, doi: 10.1007/s00193-011-0300-8.
  • [2] M. Şahin and C. Dereli, “Thermal Methods in Chemical Weapon Destruction and Computer Modeling of Plasma Technology,” Politeknik Dergisi, vol. 25, no. 4, pp. 1799–1808, 2022, doi: 10.2339/politeknik.1109423.
  • [3] Z. S. Tabatabaei, J. S. Volz, J. Baird, B. P. Gliha, and D. I. Keener, “Experimental and numerical analyses of long carbon fiber reinforced concrete panels exposed to blast loading,” Int. J. Impact Engng., vol. 57, pp. 70–80, 2013, doi: 10.1016/j.ijimpeng.2013.02.003.
  • [4] C. Dereli and M. Şahin, “Finite Element Analysis of a Real Man-made Disaster,” Savunma Bilimleri Dergisi, vol. 20, no. 2, pp. 223–236, 2024, doi: 10.17134/khosbd.1328695.
  • [5] Z. Wu, J. Guo, X. Yao, G. Chen, and X. Zhu, “Analysis of Explosion in Enclosure Based on Improved Method of Images,” Shock Waves, vol. 27, pp. 237–245, 2017, doi: 10.1007/s00193-016-0655-y.
  • [6] T. C. Chapman, T. A. Rose, and P. D. Smith, “Blast wave simulation using AUTODYN2D: A parametric study,” Int. J. Impact Engng., vol. 16, no. 5/6, pp. 777–787, 1995.
  • [7] J. Shin, A. S. Whittaker, D. Cormie, and W. Wilkinson, “Numerical modeling of close-in detonations of high explosives,” Eng. Struct., vol. 81, pp. 88–97, 2014, doi: 10.1016/j.engstruct.2014.09.022.
  • [8] T. A. Rose and P. D. Smith, “Influence of the principal geometrical parameters of straight city streets on positive and negative phase blast wave impulses,” Int. J. Impact Engng., vol. 27, no. 4, pp. 359–376, 2002.
  • [9] Y. Fan, L. Chen, Z. Li, H.-b. Xiang, and Q. Fang, “Modeling the blast load induced by a close-in explosion considering cylindrical charge parameters,” Def. Technol., vol. 24, pp. 83–108, 2023, doi: 10.1016/j.dt.2022.02.005.
  • [10] Y. Shi, H. Hao, and Z.-X. Li, “Numerical simulation of blast wave interaction with structure columns,” Shock Waves, vol. 17, pp. 113–133, 2007, doi: 10.1007/s00193-007-0099-5.
  • [11] A. Chester, R. Critchley, and R. Hazael, “A comparison of far-field explosive loads by a selection of current and emerging blast software,” Int. J. Prot. Struct., pp. 1–32, 2024, doi: 10.1177/20414196231223452.
  • [12] S. Sha, Z. Chen, X. Jiang, and J. Han, “Numerical investigations on blast wave attenuation by obstacles,” Procedia Eng., vol. 45, pp. 453–457, 2012, doi: 10.1016/j.proeng.2012.08.185.
  • [13] X. Guo et al., “A reinforced concrete shear wall building structure subjected to internal TNT explosions: Test results and numerical validation,” Int. J. Impact Engng., vol. 190, Art. no. 104950, 2024, doi: 10.1016/j.ijimpeng.2024.104950.
  • [14] Y. Sugiyama, M. Izumo, H. Ando, and A. Matsuo, “Two-dimensional explosion experiments examining the interaction between a blast wave and a sand hill,” Shock Waves, vol. 28, pp. 627–630, Feb. 2018, doi: 10.1007/s00193-018-0813-5.
  • [15] Structures to Resist the Effects of Accidental Explosions, UFC 3-340-02, Washington, DC, USA: U.S. Dept. of Defense, 2008. [Online]. Available: https://www.wbdg.org/FFC/DOD/UFC/ufc_3_340_02_2008_c5.pdf
  • [16] R. Xu, L. Chen, Q. Fang, Y. Zheng, Z. Li, and M. Cao, “Protective effects of gabion wall against blast waves from large TNT-equivalent explosions,” Eng. Struct., vol. 249, Art. no. 113389, 2021, doi: 10.1016/j.engstruct.2021.113389.
  • [17] G. F. C. Rogers and Y. R. Mayhew, Thermodynamic and Transport Properties of Fluids: SI Units, 4th ed. Oxford, UK: Blackwell, 1992.
  • [18] B. M. Dobratz and P. C. Crawford, “LLNL explosives handbook: Properties of chemical explosives and explosive simulants,” UCRL-52997, Lawrence Livermore National Laboratory, Jan. 31, 1985.
  • [19] G. S. Collins, “An Introduction to Hydrocode Modeling,” Unpublished lecture notes, The University of Arizona, Arizona, USA, 2002.
  • [20] M. Şahin and M. Yıldız, “Investigating the Effects of Remapping Method in Explosion,” Hacettepe J. Biol. Chem., vol. 52, no. 5, pp. 325–336, 2024, doi: 10.15671/hjbc.1573759.
  • [21] U.S. Army Corps of Engineers, “Barricades Standard Design,” DEF 149-30-01, Huntsville, AL, USA, Aug. 18, 2011.
There are 21 citations in total.

Details

Primary Language English
Subjects Numerical Modelization in Civil Engineering, Weapon Systems
Journal Section Articles
Authors

Melih Yildiz 0000-0001-9455-671X

Murat Şahin This is me 0000-0003-1478-3221

Early Pub Date September 15, 2025
Publication Date September 21, 2025
Submission Date July 28, 2025
Acceptance Date September 8, 2025
Published in Issue Year 2025 Issue: ERKEN GÖRÜNÜM

Cite

IEEE M. Yildiz and M. Şahin, “Protection Capability of Different Types of Barricades Against Blast Pressure”, Savunma Bilimleri Dergisi, no. ERKEN GÖRÜNÜM, pp. 1–1, September2025, doi: 10.17134/khosbd.1752718.