Review
BibTex RIS Cite

Faz Değiştiren Malzemeler: Çeşitleri, Özellikleri ve Binalarda Kullanımları

Year 2022, , 190 - 210, 30.06.2022
https://doi.org/10.34186/klujes.1126167

Abstract

Hızlı kentleşme, nüfus artışı ve gelişen teknolojiler ile artan enerji talebine karşılık kısıtlı kaynaklara sahip ve çevreye zararlı olan fosil enerjinin kullanımının azaltılması ihtiyacı, yenilenebilir enerji kullanan teknolojilerin araştırılması ve uygulanması gerekliliğini ortaya çıkarmaktadır. Faz değiştiren malzemeler (Phase Change Materials - PCM), temiz ve sürdürülebilir enerji kaynaklarından elde edilen ısıl enerjinin verimli kullanımı için en uygun yöntemlerden biridir. PCM'ler, enerjinin daha verimli kullanılmasının planlandığı bir dünyada önemli roller oynayacaktır. PCM'lerin geliştirilmesi, daha verimli ısıl enerji depolama (Thermal Energy Storage - TES) sistemleri için en zorlu çalışma alanlarından biridir. Bu makale önce PCM kavramını açıklamakta ve ardından bu malzemelerin özelliklerini aktarmaktadır. PCM'lerin özelliklerinin iyileştirilmesine yönelik çalışmalardan bahsedildikten sonra PCM çeşitleri ve avantaj-dezavantajları anlatılmıştır. Ayrıca PCM'lerin çeşitli sektörlerdeki kullanım alanları da anlatılmıştır.

References

  • [1] International Energy Agency, World Energy Outlook 2017. https://iea.blob.core.windows.net/assets/4a50d774-5e8c-457e-bcc9-513357f9b2fb/World_Energy_Outlook_2017.pdf/, 2017 (accessed 21 May 2022).
  • [2] Da Cunha J. P., Eames P., TES for Low and Medium Temperature Applications Using PCMs – A Review, Applied Energy, C 177, S 227-238, 2016.
  • [3] Kong X., Jie P., Yao C., Liu Y., Experimental Study on Thermal Performance of PCM Passive and Active Combined Using for Building Application in Winter, Applied Energy, C 206, S 293-302, 2017.
  • [4] Nomura T., Akiyama T., High-Temperature Latent Heat Storage Technology to Utilize Exergy of Solar Heat and Industrial Exhaust Heat, Exergy for A Better Environment and Improved Sustainability, C 1, S 1207-1224, 2018.
  • [5] Noël J. A., Kahwaji S., Desgrosseilliers L., Groulx D., White M. A., Storing Energy, C 13 – PCMs, Letcher T. M., editor., Elsevier; S 249-272, 2016.
  • [6] Cleveland C. J., Morris C. G., Handbook of Energy Volume II: Chronologies, Top Ten Lists and Word Clouds, C 29 – Storage, Cleveland C. J., editor., Elsevier, S 519-528, 2014.
  • [7] Lee J., Wi S., Yun B. Y., Yang S., Park J. H., Kim S., Development and Evaluation of Gypsum/Shape-Stabilization PCMs Using Large-Capacity Vacuum Impregnator for TES, Applied Energy, C 241, S 278-290, 2019.
  • [8 Lencer D., Salinga M., Wuttig M., Design Rules for Phase-Change Materials in Data Storage Applications, Advanced Materials, C 23(18), S 2030-2058, 2011.
  • [9] Bayraktar F. S., Investigation Of Thermal Properties Of Boron Added Molten Salts For Concentrating Solar Power (CSP) Applications, M. Sc. Thesis, Kutahya Dumlupinar University Graduate School of Natural and Applied Sciences, 2020.
  • [10] Al-Abidi A. A., Mat S. B., Sopian K., Sulaiman M., Mohammed A. T., CFD Applications for Latent Heat TES: A Review, Renewable and Sustainable Energy Reviews, C 20, S 353-363, 2013.
  • [11] Kahwaji S., Johnson M. B., White M. A., Thermal Property Determination for PCMs, The Journal of Chemical Thermodynamics, C 160, S 106439, 2021.
  • [12] Javadi F. S., Metselaar H. S. C., Ganesan P., Performance Improvement of Solar Thermal Systems Integrated with PCMs (PCM), A Review, Solar Energy, C 206, S 330-352, 2020.
  • [13] Abokers M. H., Osman M., El-Baz O., El-Morsi M., Sharaf O., Review of the PCM (PCM) Usage for Solar Domestic Water Heating Systems (SDWHS), International Journal of Energy Research, C 42(2), S 329-357, 2017.
  • [14] Dogkas G., Koukou M. K., Konstantaras J., Pagkalos C., Lymperis K., Stathopoulos V., Coelho L., Rebola A., Vrachopoulos M. G., Investigating the Performance of A TES Unit with Paraffin As PCM, Targeting Buildings’ Cooling Needs: An Experimental Approach, International Journal of Thermofluids, C 3-4, S 100027, 2020.
  • [15] Rasta I. M., Suamir I. N., Study on Thermal Properties of Bio-PCM Candidates in Comparison with Propylene Glycol and Salt Based PCM for sub-Zero Energy Storage Applications, IOP Conference Series: Materials Science and Engineering, C 494, S 12-24, 2018.
  • [16] Sharma A., Tyagi V. V., Chen C. R., Buddhi D., Review on TES with PCMs and Applications, Renewable and Sustainable Energy Reviews, C 13(2), S 318-345, 2009.
  • [17] Ajji Z., Jouhara H., Investigation of the Effects of Thermal, Oxidative and Irradiation Treatments on the Behaviour of Poly-Ethylene Glycol as A PCM in TES Systems, Energy, C 136, S 196-200, 2017.
  • [18] Ghani S. A. A., Jamari S. S., Abidin S. Z., Waste Materials as the Potential PCM Substitute in TES System: A Review, Chemical Engineering Communications, C 208, S 687-707, 2020.
  • [19] Yuan Y., Zhang N., Tao W., Cao X., He Y., Fatty Acids as PCMs: A Review, Renewable and Sustainable Energy Reviews, C 29, S 482-498, 2014.
  • [20] Kahwaji S., White M. A., Edible Oils as Practical PCMs for TES, Applied Sciences, C 9(8), S 16-27, 2019.
  • [21] Okogeri O., Stathopoulos V. N., What about greener phase change materials? A review on biobased phase change materials for thermal energy storage applications, International Journal of Thermofluids, C 10, S 100081, 2021.
  • [22] Reyes-Cueva E., Nicolalde J. F., Martinez-Gomez J., Characterization of Unripe and Mature Avocado Seed Oil in Different Proportions as PCMs and Simulation of Their Cooling Storage, Molecules, C 26(1), S 107-137, 2021.
  • [23] Ling Z., Liu J., Wang Q., Lin W., Fang X., Zhang Z., MgCl2·6H2O-Mg(NO3)2·6H2O Eutectic/SiO2 Composite PCM with Improved Thermal Reliability and Enhanced Thermal Conductivity, Solar Energy Materials and Solar Cells, C 172, S 195-201, 2017.
  • [24] Xie N., Huang Z., Luo Z., Gao X., Fang Y., Zhang Z., Inorganic Salt Hydrate for TES, Applied Sciences, C 7(12), S 13-17, 2017.
  • [25] Huang J., Dai J., Peng S., Wang T., Hong S., Modification on Hydrated Salt‐Based Phase Change Composites with Carbon Fillers for Electronic Thermal Management, International Journal of Energy Research, C 43(8), S 3550-3560, 2019.
  • [26] Liu Y., Yang Y., Preparation and Thermal Properties of Na2CO3·10H2O-Na2HPO4·12H2O Eutectic Hydrate Salt as A Novel PCM for Energy Storage, Applied Thermal Engineering, C 112, S 606-609, 2017.
  • [27] Zhang W., Zhang Y., Ling Z., Fang X., Zhang Z., Microinfiltration of Mg(NO3)2·6H2O into g-C3N4 and Macroencapsulation with Commercial Sealants: A Two-Step Method to Enhance the Thermal Stability of Inorganic Composite PCMs, Applied Energy, C 253, S 113540, 2019.
  • [28] Jaguemont J., Omar N., van den Bossche Mierlo P. J., Phase-Change Materials (PCM) for Automotive Applications: A Review, Applied Thermal Engineering, C 132, S 308-320, 2018.
  • [29] Yuan K., Zhou Y., Sun W., Fang X., Zhang Z., A Polymer-Coated Calcium Chloride Hexahydrate/Expanded Graphite Composite PCM with Enhanced Thermal Reliability and Good Applicability, Composites Science and Technology, C 156, S 78-86, 2018.
  • [30] Liu Y., Yang Y., Form-Stable PCM Based on Na2CO3·10H2O-Na2HPO4·12H2O Eutectic Hydrated Salt/Expanded Graphite Oxide Composite: The Influence of Chemical Structures of Expanded Graphite Oxide, Renewable Energy, C 115, S 734-740, 2018.
  • [31] Han W., Ge C., Zhang R., Ma Z., Wang L., Zhang X., Boron Nitride Foam as A Polymer Alternative in Packaging PCMs: Synthesis, Thermal Properties and Shape Stability, Applied Energy, C 238, S 942-951, 2019.
  • [32] Sarı A., Bicer A., Al-Ahmed A., Al-Sulaiman F. A., Zahir M. H., Mohamed S. A., Silica Fume/Capric Acid-Palmitic Acid Composite PCM Doped with CNTs for TES, Solar Energy Materials and Solar Cells, C 179, S 353-361, 2018.
  • [33] Darzi M. E., Golestaneh S. I., Kamali Karimi M. G., Thermal and Electrical Performance Analysis of Co-Electrospun-Electrosprayed PCM Nanofiber Composites in the Presence of Graphene and Carbon Fiber Powder, Renewable Energy, C 135, S 719-728, 2019.
  • [34] Karaipekli A., Sarı A., Preparation, Thermal Properties and Thermal Reliability of Eutectic Mixtures of Fatty Acids/Expanded Vermiculite as Novel Form-Stable Composites for Energy Storage, Journal of Industrial and Engineering Chemistry, C 16(5), S 767-773, 2010.
  • [35] Al-Maghalseh M., Mahkamov K., Methods of Heat Transfer Intensification in PCM Thermal Storage Systems: Review Paper, Renewable and Sustainable Energy Reviews, C 92, S 62-94, 2018.
  • [36] Nazir H., Batool M., Osorio F. J. B., Isaza-Ruiz M., Xu X., Vignarooban K., Phelan P., Inamuddin, Kannan A. M., Recent Developments in PCMs for Energy Storage Applications: A Review, International Journal of Heat and Mass Transfer, C 129, S 491-523, 2019.
  • [37] Lone M. I., Jilte R., A Review on PCMs for Different Applications, Materials Today: Proceedings, C 46(20), S 10980-10986, 2021.
  • [38] Yang L., Jin X., Zhang Y., Du K., Recent Development on Heat Transfer and Various Applications of Phase-Change Materials, Journal of Cleaner Production, C 287, S 124432, 2021.
  • [39] Du K., Calautit J., Wang Z., Wu Y., Liu H., A Review of the Applications of PCMs in Cooling, Heating and Power Generation in Different Temperature Ranges, Applied Energy, C 220, S 242-273, 2018.
  • [40] Douvi E., Pagkalos C., Dogkas G., Koukou M. K., Stathopoulos V. N., Caouris Vrachopoulos Y. M. G., PCMs in Solar Domestic Hot Water Systems: A Review, International Journal of Thermofluids, C 10, S 100075, 2021.
  • [41] Veerakumar C., Sreekumar A., PCM Based Cold TES: Materials, Techniques and Applications – A Review, International Journal of Refrigeration, C 67, S 271-289, 2016.
  • [42] Gholamibozanjani G., Farid M., Application of An Active PCM Storage System into A Building for Heating/Cooling Load Reduction, Energy, C 210, S 118572, 2020.
  • [43] Sardari P. T., Babaei-Mahani R., Giddings D., Yasseri S., Moghimi M. A., Bahai H., Energy Recovery from Domestic Radiators Using A Compact Composite Metal Foam/PCM Latent Heat Storage, Journal of Cleaner Production, C 257, S 120504, 2020.
  • [44] Qin D., Yu Z. J., Yang T., Li S., Zhang G., Thermal Performance Evaluation of A New Structure Hot Water Tank Integrated with PCMs, Energy Procedia, C 158, S 5034-5040, 2019.
  • [45] Jouhara H., Khordehgah N., Almahmoud S., Delpech B., Chauhan A., Tassou S. A., Waste Heat Recovery Technologies and Applications, Thermal Science and Engineering Progress, C 6, S 268-289, 2018.
  • [46] Khdair A. I., Abu Rumman G., Basha M., Developing Building Enhanced with PCM to Reduce Energy Consumption, Journal of Building Engineering, C 48, S 103923, 2022.
  • [47] Mousavi S., Rismanchi B., Brey S., Aye L., PCM Embedded Radiant Chilled Ceiling: A State-Of-The-Art Review, Renewable and Sustainable Energy Reviews, C 151, S 111601, 2021.
  • [48] Wang, P., Liu, Z., Xi, S., Zhang, Y., Zhang, L. Experiment and Numerical Simulation of An Adaptive Building Roof Combining Variable Transparency Shape-Stabilized PCM, Energy and Buildings, C 263, S 112030, 2022.
  • [49] Larwa B., Cesari S., Bottarelli M., Study on thermal performance of a PCM enhanced hydronic radiant floor heating system, Energy, C 225, S 120245, 2021.
  • [50] González B., Prieto M. M., Radiant Heating Floors with PCM Bands for Thermal Energy Storage: A Numerical Analysis, International Journal of Thermal Sciences, C 162, S 106803, 2021.
  • [51] Guo J., Jiang Y., A Semi-Analytical Model for Evaluating the Thermal Storage Capacity and Heat Use Efficiency of Flexible Thermal Storage Heating Floor, Applied Thermal Engineering, C 198, S 117448, 2021.
  • [52] Liu Y., Tian Z., Song C., Chen Y., Li Y., Liu J., Thermal Performance and Optimization of A Casing Pipe Solar Energy Storage Floor with Phase Change Material, Energy and Buildings, C 247, S 111167, 2021.
  • [53] Babaharra, O., Choukairy, K., Hamdaoui, S., Khallaki, K., Mounir, S. H., Thermal Behavior Evaluation of A Radiant Floor Heating System Incorporates A Microencapsulated Phase Change Material, Construction and Building Materials, C 330, S 127293, 2022. [54] Zhu X., Sheng X., Li J., Chen Y., Thermal Comfort and Energy Saving of Novel Heat-Storage Coatings with Microencapsulated PCM and Their Application, Energy and Buildings, C 251, S 111349, 2021.
  • [55] Dehkordi B. S., Afrand M., Energy-Saving Owing to Using PCM into Buildings: Considering of Hot and Cold Climate Region, Sustainable Energy Technologies and Assessments, C 52(B), S 102112, 2022.
  • [56] Wang X., Li W., Luo Z., Wang K., Shah S. P., A Critical Review on Phase Change Materials (PCM) for Sustainable and Energy Efficient Building: Design, Characteristic, Performance and Application, Energy and Buildings, C 260, S 111923, 2022.
  • [57] Raj V. A. A., Velraj R., Review on Free Cooling of Buildings Using PCMs, Renewable and Sustainable Energy Reviews, C 14(9), S 2819-2829, 2014.
  • [58] Hasan A., McCormack S. J., Huang M. J., Norton B., Evaluation of PCMs for Thermal Regulation Enhancement of Building Integrated Photovoltaics, Solar Energy, C 84(9), S 1601-1612, 2010.
  • [59] Souayfane F., Fardoun F., Biwole P. H., Phase Change Materials (PCM) for Cooling Applications in Buildings: A Review, Energy and Buildings, C 129, S 396-431, 2016.
  • [60] Guichard S., Miranville F., Bigot D., Boyer H., A Thermal Model for Phase Change Materials in A Building Roof for A Tropical and Humid Climate: Model Description and Elements of Validation, Energy and Buildings, C 70, S 71-80, 2014.
  • [61] Khan M., Ibrahim M., Saeed T., Space Cooling Achievement by Using Lower Electricity in Hot Months Through Introducing PCM-Enhanced Buildings, Journal of Building Engineering, C 53, S 104506, 2022.
  • [62] Kalbasi R., Hassani P., Buildings with Less HVAC Power Demand by Incorporating PCM into Envelopes Taking into Account ASHRAE Climate Classification, Journal of Building Engineering, C 51, S 104303, 2022.
  • [63] Arumugam P., Ramalingam V., Vellaichamy P., Effective PCM, Insulation, Natural and/or Night Ventilation Techniques to Enhance the Thermal Performance of Buildings Located in Various Climates – A Review, Energy and Buildings, C 258, S 111840, 2022.
  • [64] Hatamleh R. I., Abu,Hamdeh N. H., Bantan R. A. R., Integration of A Solar Air Heater to A Building Equipped with PCM to Reduce the Energy Demand, Journal of Building Engineering, C 48, S 103948, 2022.
  • [65] Farouk N., Alotaibi A. A., Alshahri A. H., Almitani K. H., Using PCM in Buildings ro Reduce HVAC Energy Usage Taking into Account Saudi Arabia Climate Region, Journal of Building Engineering, C 50, S 104073, 2022.
  • [66] Mustafa J., Almehmadi F. A., Alqaed S., A Novel Study to Examine Dependency of Indoor Temperature and PCM to Reduce Energy Consumption in Buildings, Journal of Building Engineering, C 51, S 104249, 2022.
  • [67] Kalbasi R., Usefulness of PCM in Building Applications Focusing on Envelope Heat Exchange – Energy Saving Considering Two Scenarios, Sustainable Energy Technologies and Assessments C 50, S 101848, 2022.
  • [68] Gholamibozanjani G., Farid M., Application of An Active PCM Storage System into A Building for Heating/Cooling Load Reduction, Energy, C 210, S 118572, 2020.
  • [69] Alqaed S., Effect of Using A Solar Hot Air Collector Installed on the Inclined Roof of A Building for Cooling and Heating System in the Presence of Polymeric PCM, Sustainable Energy Technologies and Assessments, C 50, S 101852, 2022.
  • [70] Salihi M., El Fiti M., Harmen Y., Chhiti Y., Chebak A., Alaoui F. E. M., Achak M., Bentiss F., Jama, C., Evaluation of Global Energy Performance of Building Walls Integrating PCM: Numerical Study in Semi-Arid Climate in Morocco, Case Studies in Construction Materials, C 16, S e00979, 2022.
  • [71] Wu Q., Wang J., Meng X., Influence of Wall Thermal Performance on the Contribution Efficiency of the Phase-Change Material (PCM) Layer, Case Studies in Thermal Engineering, C 28, S 101398, 2021.
  • [72] Liu Z., Hou J., Huang Y., Zhang J., Meng X., Dewancker B. J., Influence of Phase Change Material (PCM) Parameters on the Thermal Performance of Lightweight Building Walls with Different Thermal Resistances, Case Studies in Thermal Engineering, C 31, S 101844, 2022.
  • [73] Al-Absi Z. A., Hafizal M. I. M., Ismail M., Experimental Study on the Thermal Performance of PCM-Based Panels Developed for Exterior Finishes of Building Walls, Journal of Building Engineering, C 52, S 104379, 2022.
  • [74] Saeed, T., Influence of the Number of Holes and Two Types of PCM in Brick on the Heat Flux Passing Through the Wall of A Building on A Sunny Day in Medina, Saudi Arabia, Journal of Building Engineering, C 50, S 104215, 2022.
  • [75] Sun X., Zhang Y., Xie K., Medina M. A., A Parametric Study on the Thermal Response of A Building Wall with A Phase Change Material (PCM) Layer for Passive Space Cooling, Journal of Energy Storage, C 47, S 103548, 2022.
  • [76] Gencel O., Hekimoglu G., Sarı A., Ustaoğlu A., Subasi S., Marasli M., Erdogmus E., Memon S. A., Glass Fiber Reinforced Gypsum Composites with Microencapsulated PCM as Novel Building Thermal Energy Storage Material, Construction and Building Management, C 340, S 127788, 2022.
  • [77] Saxena R., Rakshit D., Kaushik S. C., PCM (PCM) Incorporated Bricks for Energy Conservation in Composite Climate: A Sustainable Building Solution, Solar Energy, C 183, S 276-284, 2019.
  • [78] da Cunha S. R. L., de Aguiar J. L. B., PCMs and Energy Efficiency of Buildings: A Review of Knowledge, Journal of Energy Storage, C 27, S 101083, 2020.
  • [79] Kenisarin M. M., Mahkamov K., Costa S. C., Mahkamova I., Melting and Solidification of PCMs Inside A Spherical Capsule: A Critical Review, Journal of Energy Storage, C 27, S 101082, 2020.
  • [80] Peng G., Dou G., Hu Y., Sun Y., Chen Z., PCM (PCM) Micrcapsules for TES, Advances in Polymer Technology, C 2020, S 9490873, 2020.

PHASE CHANGE MATERIALS: TYPES, PROPERTIES and APPLICATIONS in BUILDINGS

Year 2022, , 190 - 210, 30.06.2022
https://doi.org/10.34186/klujes.1126167

Abstract

The need to reduce the use of fossil energy, which is running out and harmful to the environment, in response to the increasing energy demand with rapid urbanization, population growth and developing technologies reveals the necessity of research and application of technologies using renewable energy. Phase-change materials (PCM) are one of the most suitable methods for the efficient use of thermal energy originating from clean and sustainable energy sources. PCMs play important roles in a more energy-efficient world. The development of PCMs is one of the most challenging areas of study for more efficient thermal energy storage (TES) systems. This paper first explains the concept of PCMs and then describes the properties of these materials. After mentioned studies for improving the properties of PCMs, then PCM types and advantages-disadvantages are explained. Also, usage areas of PCMs in various sectors are also explained.

References

  • [1] International Energy Agency, World Energy Outlook 2017. https://iea.blob.core.windows.net/assets/4a50d774-5e8c-457e-bcc9-513357f9b2fb/World_Energy_Outlook_2017.pdf/, 2017 (accessed 21 May 2022).
  • [2] Da Cunha J. P., Eames P., TES for Low and Medium Temperature Applications Using PCMs – A Review, Applied Energy, C 177, S 227-238, 2016.
  • [3] Kong X., Jie P., Yao C., Liu Y., Experimental Study on Thermal Performance of PCM Passive and Active Combined Using for Building Application in Winter, Applied Energy, C 206, S 293-302, 2017.
  • [4] Nomura T., Akiyama T., High-Temperature Latent Heat Storage Technology to Utilize Exergy of Solar Heat and Industrial Exhaust Heat, Exergy for A Better Environment and Improved Sustainability, C 1, S 1207-1224, 2018.
  • [5] Noël J. A., Kahwaji S., Desgrosseilliers L., Groulx D., White M. A., Storing Energy, C 13 – PCMs, Letcher T. M., editor., Elsevier; S 249-272, 2016.
  • [6] Cleveland C. J., Morris C. G., Handbook of Energy Volume II: Chronologies, Top Ten Lists and Word Clouds, C 29 – Storage, Cleveland C. J., editor., Elsevier, S 519-528, 2014.
  • [7] Lee J., Wi S., Yun B. Y., Yang S., Park J. H., Kim S., Development and Evaluation of Gypsum/Shape-Stabilization PCMs Using Large-Capacity Vacuum Impregnator for TES, Applied Energy, C 241, S 278-290, 2019.
  • [8 Lencer D., Salinga M., Wuttig M., Design Rules for Phase-Change Materials in Data Storage Applications, Advanced Materials, C 23(18), S 2030-2058, 2011.
  • [9] Bayraktar F. S., Investigation Of Thermal Properties Of Boron Added Molten Salts For Concentrating Solar Power (CSP) Applications, M. Sc. Thesis, Kutahya Dumlupinar University Graduate School of Natural and Applied Sciences, 2020.
  • [10] Al-Abidi A. A., Mat S. B., Sopian K., Sulaiman M., Mohammed A. T., CFD Applications for Latent Heat TES: A Review, Renewable and Sustainable Energy Reviews, C 20, S 353-363, 2013.
  • [11] Kahwaji S., Johnson M. B., White M. A., Thermal Property Determination for PCMs, The Journal of Chemical Thermodynamics, C 160, S 106439, 2021.
  • [12] Javadi F. S., Metselaar H. S. C., Ganesan P., Performance Improvement of Solar Thermal Systems Integrated with PCMs (PCM), A Review, Solar Energy, C 206, S 330-352, 2020.
  • [13] Abokers M. H., Osman M., El-Baz O., El-Morsi M., Sharaf O., Review of the PCM (PCM) Usage for Solar Domestic Water Heating Systems (SDWHS), International Journal of Energy Research, C 42(2), S 329-357, 2017.
  • [14] Dogkas G., Koukou M. K., Konstantaras J., Pagkalos C., Lymperis K., Stathopoulos V., Coelho L., Rebola A., Vrachopoulos M. G., Investigating the Performance of A TES Unit with Paraffin As PCM, Targeting Buildings’ Cooling Needs: An Experimental Approach, International Journal of Thermofluids, C 3-4, S 100027, 2020.
  • [15] Rasta I. M., Suamir I. N., Study on Thermal Properties of Bio-PCM Candidates in Comparison with Propylene Glycol and Salt Based PCM for sub-Zero Energy Storage Applications, IOP Conference Series: Materials Science and Engineering, C 494, S 12-24, 2018.
  • [16] Sharma A., Tyagi V. V., Chen C. R., Buddhi D., Review on TES with PCMs and Applications, Renewable and Sustainable Energy Reviews, C 13(2), S 318-345, 2009.
  • [17] Ajji Z., Jouhara H., Investigation of the Effects of Thermal, Oxidative and Irradiation Treatments on the Behaviour of Poly-Ethylene Glycol as A PCM in TES Systems, Energy, C 136, S 196-200, 2017.
  • [18] Ghani S. A. A., Jamari S. S., Abidin S. Z., Waste Materials as the Potential PCM Substitute in TES System: A Review, Chemical Engineering Communications, C 208, S 687-707, 2020.
  • [19] Yuan Y., Zhang N., Tao W., Cao X., He Y., Fatty Acids as PCMs: A Review, Renewable and Sustainable Energy Reviews, C 29, S 482-498, 2014.
  • [20] Kahwaji S., White M. A., Edible Oils as Practical PCMs for TES, Applied Sciences, C 9(8), S 16-27, 2019.
  • [21] Okogeri O., Stathopoulos V. N., What about greener phase change materials? A review on biobased phase change materials for thermal energy storage applications, International Journal of Thermofluids, C 10, S 100081, 2021.
  • [22] Reyes-Cueva E., Nicolalde J. F., Martinez-Gomez J., Characterization of Unripe and Mature Avocado Seed Oil in Different Proportions as PCMs and Simulation of Their Cooling Storage, Molecules, C 26(1), S 107-137, 2021.
  • [23] Ling Z., Liu J., Wang Q., Lin W., Fang X., Zhang Z., MgCl2·6H2O-Mg(NO3)2·6H2O Eutectic/SiO2 Composite PCM with Improved Thermal Reliability and Enhanced Thermal Conductivity, Solar Energy Materials and Solar Cells, C 172, S 195-201, 2017.
  • [24] Xie N., Huang Z., Luo Z., Gao X., Fang Y., Zhang Z., Inorganic Salt Hydrate for TES, Applied Sciences, C 7(12), S 13-17, 2017.
  • [25] Huang J., Dai J., Peng S., Wang T., Hong S., Modification on Hydrated Salt‐Based Phase Change Composites with Carbon Fillers for Electronic Thermal Management, International Journal of Energy Research, C 43(8), S 3550-3560, 2019.
  • [26] Liu Y., Yang Y., Preparation and Thermal Properties of Na2CO3·10H2O-Na2HPO4·12H2O Eutectic Hydrate Salt as A Novel PCM for Energy Storage, Applied Thermal Engineering, C 112, S 606-609, 2017.
  • [27] Zhang W., Zhang Y., Ling Z., Fang X., Zhang Z., Microinfiltration of Mg(NO3)2·6H2O into g-C3N4 and Macroencapsulation with Commercial Sealants: A Two-Step Method to Enhance the Thermal Stability of Inorganic Composite PCMs, Applied Energy, C 253, S 113540, 2019.
  • [28] Jaguemont J., Omar N., van den Bossche Mierlo P. J., Phase-Change Materials (PCM) for Automotive Applications: A Review, Applied Thermal Engineering, C 132, S 308-320, 2018.
  • [29] Yuan K., Zhou Y., Sun W., Fang X., Zhang Z., A Polymer-Coated Calcium Chloride Hexahydrate/Expanded Graphite Composite PCM with Enhanced Thermal Reliability and Good Applicability, Composites Science and Technology, C 156, S 78-86, 2018.
  • [30] Liu Y., Yang Y., Form-Stable PCM Based on Na2CO3·10H2O-Na2HPO4·12H2O Eutectic Hydrated Salt/Expanded Graphite Oxide Composite: The Influence of Chemical Structures of Expanded Graphite Oxide, Renewable Energy, C 115, S 734-740, 2018.
  • [31] Han W., Ge C., Zhang R., Ma Z., Wang L., Zhang X., Boron Nitride Foam as A Polymer Alternative in Packaging PCMs: Synthesis, Thermal Properties and Shape Stability, Applied Energy, C 238, S 942-951, 2019.
  • [32] Sarı A., Bicer A., Al-Ahmed A., Al-Sulaiman F. A., Zahir M. H., Mohamed S. A., Silica Fume/Capric Acid-Palmitic Acid Composite PCM Doped with CNTs for TES, Solar Energy Materials and Solar Cells, C 179, S 353-361, 2018.
  • [33] Darzi M. E., Golestaneh S. I., Kamali Karimi M. G., Thermal and Electrical Performance Analysis of Co-Electrospun-Electrosprayed PCM Nanofiber Composites in the Presence of Graphene and Carbon Fiber Powder, Renewable Energy, C 135, S 719-728, 2019.
  • [34] Karaipekli A., Sarı A., Preparation, Thermal Properties and Thermal Reliability of Eutectic Mixtures of Fatty Acids/Expanded Vermiculite as Novel Form-Stable Composites for Energy Storage, Journal of Industrial and Engineering Chemistry, C 16(5), S 767-773, 2010.
  • [35] Al-Maghalseh M., Mahkamov K., Methods of Heat Transfer Intensification in PCM Thermal Storage Systems: Review Paper, Renewable and Sustainable Energy Reviews, C 92, S 62-94, 2018.
  • [36] Nazir H., Batool M., Osorio F. J. B., Isaza-Ruiz M., Xu X., Vignarooban K., Phelan P., Inamuddin, Kannan A. M., Recent Developments in PCMs for Energy Storage Applications: A Review, International Journal of Heat and Mass Transfer, C 129, S 491-523, 2019.
  • [37] Lone M. I., Jilte R., A Review on PCMs for Different Applications, Materials Today: Proceedings, C 46(20), S 10980-10986, 2021.
  • [38] Yang L., Jin X., Zhang Y., Du K., Recent Development on Heat Transfer and Various Applications of Phase-Change Materials, Journal of Cleaner Production, C 287, S 124432, 2021.
  • [39] Du K., Calautit J., Wang Z., Wu Y., Liu H., A Review of the Applications of PCMs in Cooling, Heating and Power Generation in Different Temperature Ranges, Applied Energy, C 220, S 242-273, 2018.
  • [40] Douvi E., Pagkalos C., Dogkas G., Koukou M. K., Stathopoulos V. N., Caouris Vrachopoulos Y. M. G., PCMs in Solar Domestic Hot Water Systems: A Review, International Journal of Thermofluids, C 10, S 100075, 2021.
  • [41] Veerakumar C., Sreekumar A., PCM Based Cold TES: Materials, Techniques and Applications – A Review, International Journal of Refrigeration, C 67, S 271-289, 2016.
  • [42] Gholamibozanjani G., Farid M., Application of An Active PCM Storage System into A Building for Heating/Cooling Load Reduction, Energy, C 210, S 118572, 2020.
  • [43] Sardari P. T., Babaei-Mahani R., Giddings D., Yasseri S., Moghimi M. A., Bahai H., Energy Recovery from Domestic Radiators Using A Compact Composite Metal Foam/PCM Latent Heat Storage, Journal of Cleaner Production, C 257, S 120504, 2020.
  • [44] Qin D., Yu Z. J., Yang T., Li S., Zhang G., Thermal Performance Evaluation of A New Structure Hot Water Tank Integrated with PCMs, Energy Procedia, C 158, S 5034-5040, 2019.
  • [45] Jouhara H., Khordehgah N., Almahmoud S., Delpech B., Chauhan A., Tassou S. A., Waste Heat Recovery Technologies and Applications, Thermal Science and Engineering Progress, C 6, S 268-289, 2018.
  • [46] Khdair A. I., Abu Rumman G., Basha M., Developing Building Enhanced with PCM to Reduce Energy Consumption, Journal of Building Engineering, C 48, S 103923, 2022.
  • [47] Mousavi S., Rismanchi B., Brey S., Aye L., PCM Embedded Radiant Chilled Ceiling: A State-Of-The-Art Review, Renewable and Sustainable Energy Reviews, C 151, S 111601, 2021.
  • [48] Wang, P., Liu, Z., Xi, S., Zhang, Y., Zhang, L. Experiment and Numerical Simulation of An Adaptive Building Roof Combining Variable Transparency Shape-Stabilized PCM, Energy and Buildings, C 263, S 112030, 2022.
  • [49] Larwa B., Cesari S., Bottarelli M., Study on thermal performance of a PCM enhanced hydronic radiant floor heating system, Energy, C 225, S 120245, 2021.
  • [50] González B., Prieto M. M., Radiant Heating Floors with PCM Bands for Thermal Energy Storage: A Numerical Analysis, International Journal of Thermal Sciences, C 162, S 106803, 2021.
  • [51] Guo J., Jiang Y., A Semi-Analytical Model for Evaluating the Thermal Storage Capacity and Heat Use Efficiency of Flexible Thermal Storage Heating Floor, Applied Thermal Engineering, C 198, S 117448, 2021.
  • [52] Liu Y., Tian Z., Song C., Chen Y., Li Y., Liu J., Thermal Performance and Optimization of A Casing Pipe Solar Energy Storage Floor with Phase Change Material, Energy and Buildings, C 247, S 111167, 2021.
  • [53] Babaharra, O., Choukairy, K., Hamdaoui, S., Khallaki, K., Mounir, S. H., Thermal Behavior Evaluation of A Radiant Floor Heating System Incorporates A Microencapsulated Phase Change Material, Construction and Building Materials, C 330, S 127293, 2022. [54] Zhu X., Sheng X., Li J., Chen Y., Thermal Comfort and Energy Saving of Novel Heat-Storage Coatings with Microencapsulated PCM and Their Application, Energy and Buildings, C 251, S 111349, 2021.
  • [55] Dehkordi B. S., Afrand M., Energy-Saving Owing to Using PCM into Buildings: Considering of Hot and Cold Climate Region, Sustainable Energy Technologies and Assessments, C 52(B), S 102112, 2022.
  • [56] Wang X., Li W., Luo Z., Wang K., Shah S. P., A Critical Review on Phase Change Materials (PCM) for Sustainable and Energy Efficient Building: Design, Characteristic, Performance and Application, Energy and Buildings, C 260, S 111923, 2022.
  • [57] Raj V. A. A., Velraj R., Review on Free Cooling of Buildings Using PCMs, Renewable and Sustainable Energy Reviews, C 14(9), S 2819-2829, 2014.
  • [58] Hasan A., McCormack S. J., Huang M. J., Norton B., Evaluation of PCMs for Thermal Regulation Enhancement of Building Integrated Photovoltaics, Solar Energy, C 84(9), S 1601-1612, 2010.
  • [59] Souayfane F., Fardoun F., Biwole P. H., Phase Change Materials (PCM) for Cooling Applications in Buildings: A Review, Energy and Buildings, C 129, S 396-431, 2016.
  • [60] Guichard S., Miranville F., Bigot D., Boyer H., A Thermal Model for Phase Change Materials in A Building Roof for A Tropical and Humid Climate: Model Description and Elements of Validation, Energy and Buildings, C 70, S 71-80, 2014.
  • [61] Khan M., Ibrahim M., Saeed T., Space Cooling Achievement by Using Lower Electricity in Hot Months Through Introducing PCM-Enhanced Buildings, Journal of Building Engineering, C 53, S 104506, 2022.
  • [62] Kalbasi R., Hassani P., Buildings with Less HVAC Power Demand by Incorporating PCM into Envelopes Taking into Account ASHRAE Climate Classification, Journal of Building Engineering, C 51, S 104303, 2022.
  • [63] Arumugam P., Ramalingam V., Vellaichamy P., Effective PCM, Insulation, Natural and/or Night Ventilation Techniques to Enhance the Thermal Performance of Buildings Located in Various Climates – A Review, Energy and Buildings, C 258, S 111840, 2022.
  • [64] Hatamleh R. I., Abu,Hamdeh N. H., Bantan R. A. R., Integration of A Solar Air Heater to A Building Equipped with PCM to Reduce the Energy Demand, Journal of Building Engineering, C 48, S 103948, 2022.
  • [65] Farouk N., Alotaibi A. A., Alshahri A. H., Almitani K. H., Using PCM in Buildings ro Reduce HVAC Energy Usage Taking into Account Saudi Arabia Climate Region, Journal of Building Engineering, C 50, S 104073, 2022.
  • [66] Mustafa J., Almehmadi F. A., Alqaed S., A Novel Study to Examine Dependency of Indoor Temperature and PCM to Reduce Energy Consumption in Buildings, Journal of Building Engineering, C 51, S 104249, 2022.
  • [67] Kalbasi R., Usefulness of PCM in Building Applications Focusing on Envelope Heat Exchange – Energy Saving Considering Two Scenarios, Sustainable Energy Technologies and Assessments C 50, S 101848, 2022.
  • [68] Gholamibozanjani G., Farid M., Application of An Active PCM Storage System into A Building for Heating/Cooling Load Reduction, Energy, C 210, S 118572, 2020.
  • [69] Alqaed S., Effect of Using A Solar Hot Air Collector Installed on the Inclined Roof of A Building for Cooling and Heating System in the Presence of Polymeric PCM, Sustainable Energy Technologies and Assessments, C 50, S 101852, 2022.
  • [70] Salihi M., El Fiti M., Harmen Y., Chhiti Y., Chebak A., Alaoui F. E. M., Achak M., Bentiss F., Jama, C., Evaluation of Global Energy Performance of Building Walls Integrating PCM: Numerical Study in Semi-Arid Climate in Morocco, Case Studies in Construction Materials, C 16, S e00979, 2022.
  • [71] Wu Q., Wang J., Meng X., Influence of Wall Thermal Performance on the Contribution Efficiency of the Phase-Change Material (PCM) Layer, Case Studies in Thermal Engineering, C 28, S 101398, 2021.
  • [72] Liu Z., Hou J., Huang Y., Zhang J., Meng X., Dewancker B. J., Influence of Phase Change Material (PCM) Parameters on the Thermal Performance of Lightweight Building Walls with Different Thermal Resistances, Case Studies in Thermal Engineering, C 31, S 101844, 2022.
  • [73] Al-Absi Z. A., Hafizal M. I. M., Ismail M., Experimental Study on the Thermal Performance of PCM-Based Panels Developed for Exterior Finishes of Building Walls, Journal of Building Engineering, C 52, S 104379, 2022.
  • [74] Saeed, T., Influence of the Number of Holes and Two Types of PCM in Brick on the Heat Flux Passing Through the Wall of A Building on A Sunny Day in Medina, Saudi Arabia, Journal of Building Engineering, C 50, S 104215, 2022.
  • [75] Sun X., Zhang Y., Xie K., Medina M. A., A Parametric Study on the Thermal Response of A Building Wall with A Phase Change Material (PCM) Layer for Passive Space Cooling, Journal of Energy Storage, C 47, S 103548, 2022.
  • [76] Gencel O., Hekimoglu G., Sarı A., Ustaoğlu A., Subasi S., Marasli M., Erdogmus E., Memon S. A., Glass Fiber Reinforced Gypsum Composites with Microencapsulated PCM as Novel Building Thermal Energy Storage Material, Construction and Building Management, C 340, S 127788, 2022.
  • [77] Saxena R., Rakshit D., Kaushik S. C., PCM (PCM) Incorporated Bricks for Energy Conservation in Composite Climate: A Sustainable Building Solution, Solar Energy, C 183, S 276-284, 2019.
  • [78] da Cunha S. R. L., de Aguiar J. L. B., PCMs and Energy Efficiency of Buildings: A Review of Knowledge, Journal of Energy Storage, C 27, S 101083, 2020.
  • [79] Kenisarin M. M., Mahkamov K., Costa S. C., Mahkamova I., Melting and Solidification of PCMs Inside A Spherical Capsule: A Critical Review, Journal of Energy Storage, C 27, S 101082, 2020.
  • [80] Peng G., Dou G., Hu Y., Sun Y., Chen Z., PCM (PCM) Micrcapsules for TES, Advances in Polymer Technology, C 2020, S 9490873, 2020.
There are 79 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Issue
Authors

Fatih Selim Bayraktar 0000-0002-8672-3511

Ramazan Köse 0000-0001-6041-6591

Publication Date June 30, 2022
Published in Issue Year 2022

Cite

APA Bayraktar, F. S., & Köse, R. (2022). PHASE CHANGE MATERIALS: TYPES, PROPERTIES and APPLICATIONS in BUILDINGS. Kirklareli University Journal of Engineering and Science, 8(1), 190-210. https://doi.org/10.34186/klujes.1126167