Review
BibTex RIS Cite

Topoloji Optimizasyonu ile Metal Eklemeli İmalat Yönteminin Endüstriyel Uygulamaları

Year 2023, , 552 - 565, 31.12.2023
https://doi.org/10.34186/klujes.1404647

Abstract

Metal eklemeli imalat, geleneksel üretim yöntemleriyle mümkün olmayan karmaşık metal yapıları üretme kapasitesiyle yenilikçi üretim süreçlerinde önemli bir rol oynamaktadır. Topoloji optimizasyonu ise, belirlenen tasarım alanlarında hedeflenen parametreleri en uygun şekilde dağıtarak malzeme verimliliğini artırır. Bu çalışma, metal eklemeli imalat ve topoloji optimizasyonunun endüstriyel uygulamalarını derinlemesine inceleyerek, bu teknolojilerin özellikle havacılık, medikal ve otomotiv sektörlerinde üretilebilirlik, işlevsellik ve tasarım özgürlüğü açısından önemli avantajlar sunduğunu göstermektedir. Havacılık sektöründe, uçak parçalarının hafifletilmesi ve yapısal bütünlüğün artırılmasında Metal eklemeli imalat ve topoloji optimizasyonunun birleşimi kritik öneme sahiptir. Medikal alanda, özelleştirilmiş implantlar ve kemik yapıları için bu yöntemlerin entegrasyonu, hastalara özel çözümler sunarak tedavi süreçlerini iyileştirmektedir. Otomotiv endüstrisinde ise, bu teknolojiler araçların performansını artırırken ağırlığını azaltarak enerji verimliliğini yükseltiyor. Bu çalışma metal eklemeli imalat ve topoloji optimizasyonunun endüstriyel uygulamalardaki zorlukları ve sınırlamaları da ele almıştır. Ayrıca bu teknolojilerin gelecekteki gelişim yönlerini ve potansiyellerini detaylı bir şekilde ortaya koyarak, endüstriyel tasarımda yenilikçi yaklaşımların önünü açması amaçlanmıştır.

References

  • A. Bacciaglia, A. Ceruti, and A. Liverani, "Additive Manufacturing Challenges and Future Developments in the Next Ten Years," in Design Tools and Methods in Industrial Engineering, pp. 891–902, 2020. doi: 10.1007/978-3-030-31154-4_76.
  • B. Blakey-Milner et al., "Metal Additive Manufacturing in Aerospace: A Review," Materials and Design, vol. 209, 110008, 2021. doi: 10.1016/j.matdes.2021.110008.
  • T. Pan, S. Karnati, and F. Liou, "General Rules for Pre-Process Planning in Powder Bed Fusion System–A Review," in Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium–an Additive Manufacturing Conference, SFF 2018, pp. 1161–1173, 2020b.
  • T. DebRoy et al., "Additive Manufacturing of Metallic Components–Process, Structure and Properties," Progress in Materials Science, vol. 92, pp. 112–224, 2018. doi: 10.1016/j.pmatsci.2017.10.001.
  • Y. Kok et al., "Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review," Materials and Design, vol. 139, pp. 565–586, 2018. doi: 10.1016/j.matdes.2017.11.021.
  • A. Gisario et al., "Metal Additive Manufacturing in the Commercial Aviation Industry: A Review," Journal of Manufacturing Systems, vol. 53, pp. 124–149, 2019. doi: 10.1016/j.jmsy.2019.08.005.
  • A. Bandyopadhyay and K. D. Traxel, "Invited Review Article: Metal-Additive Manufacturing–Modeling Strategies for Application-Optimized Designs," Addit Manuf, vol. 22, pp. 758–774, 2018. doi: 10.1016/j.addma.2018.06.024.
  • S. Srivastava et al., "Measurement and Mitigation of Residual Stress in Wire-Arc Additive Manufacturing: A Review of Macro-Scale Continuum Modelling Approach," Archives of Computational Methods in Engineering, vol. 28, no. 5, pp. 3491–3515, 2020a. doi: 10.1007/s11831-020-09511-4.
  • S. M. Hashemi et al., "Computational Modelling of Process–Structure–Property–Performance Relationships in Metal Additive Manufacturing: A Review," International Materials Reviews, pp. 1–46, 2021. doi: 10.1080/09506608.2020.1868889.
  • J. Zhu, H. Zhou, C. Wang, L. Zhou, S. Yuan, and W. Zhang, "A Review of Topology Optimization for Additive Manufacturing: Status and Challenges," Chinese Journal of Aeronautics, vol. 34, no. 1, pp. 91–110, 2021b. doi: 10.1016/j.cja.2020.09.020. M. Süß et al., "Aerospace Case Study on Topology Optimization for Additive Manufacturing," DDMC 2016 Proceedings, March 2016: 6.
  • M. Seabra et al., "Selective Laser Melting (SLM) and Topology Optimization for Lighter Aerospace Componentes," Procedia Structural Integrity, vol. 1, pp. 289–296, 2016. doi: 10.1016/j.prostr.2016.02.039.
  • L. Magerramova, B. Vasilyev, and V. Kinzburskiy, "Novel Designs of Turbine Blades for Additive Manufacturing," in Volume 5C: Heat Transfer. American Society of Mechanical Engineers, 2016. doi: 10.1115/gt2016-56084.
  • J. D. López-Castro et al., "Topological Optimization and Manufacturing by Direct Metal Laser Sintering of an Aeronautical Part in 15-5PH Stainless Steel," Procedia Manuf, vol. 13, pp. 818–824, 2017. doi: 10.1016/j.promfg.2017.09.121.
  • D. J. Munk, D. J. Auld, G. P. Steven, and G. A. Vio, "On the Benefits of Applying Topology Optimization to Structural Design of Aircraft Components," Structural and Multidisciplinary Optimization, vol. 60, no. 3, pp. 1245–1266, 2019. doi: 10.1007/s00158-019-02250-6.
  • A. Gaymann, F. Montomoli, and M. Pietropaoli, "Design for Additive Manufacturing: Valves Without Moving Parts," in Volume 2C: Turbomachinery. American Society of Mechanical Engineers, 2017. doi: 10.1115/gt2017-64872.
  • A. W. Gebisa and H. G. Lemu, "A Case Study on Topology Optimized Design for Additive Manufacturing," IOP Conf Ser Mater Sci Eng, vol. 276, 12026, 2017a. doi: 10.1088/1757-899x/276/1/012026.
  • K. V. Fetisov and P. V. Maksimov, "Topology Optimization and Laser Additive Manufacturing in Design Process of Efficiency Lightweight Aerospace Parts," Journal of Physics: Conference Series, vol. 1015, 52006, 2018. doi: 10.1088/1742-6596/1015/5/052006.
  • H. Herzog et al., "Optical Fabrication of Lightweighted 3D Printed Mirrors," in Optomechanical Engineering 2015. SPIE, 2015. doi: 10.1117/12.2188197.
  • R. Hu et al., "Design Optimization Method for Additive Manufacturing of the Primary Mirror of a Large-Aperture Space Telescope," Journal of Aerospace Engineering, vol. 30, no. 3, 4016093–4000000, 2017. doi: 10.1061/(asce)as.1943-5525.0000690.
  • M. E. Orme et al., "Designing for Additive Manufacturing: Lightweighting Through Topology Optimization Enables Lunar Spacecraft," Journal of Mechanical Design, vol. 139, no. 10, 2017. doi: 10.1115/1.4037304.
  • S. Singamneni et al., "Additive Manufacturing for the Aircraft Industry: A Review," Journal of Aeronautics & Aerospace Engineering, vol. 8, no. 1, 13, 2019. doi: 10.4172/2329-6542.1000214.
  • Xillo, "The World’s First 3D Printed Total Jaw Reconstruction," 2011. Available: https://www.xilloc.com/patients/stories/total-mandibular-implant/.
  • M. Leary, "Design of Titanium Implants for Additive Manufacturing," in Titanium in Medical and Dental Applications, edited by F. H. Froes and M. Qian. Elsevier Inc., 2018. doi: 10.1016/B978-0-12-812456-7.00009-3.
  • D. Shidid, M. Leary, P. Choong, and M. Brandt, "Just-in-Time Design and Additive Manufacture of Patient-Specific Medical Implants," Physics Procedia, vol. 83, pp. 4–14, 2016. doi: 10.1016/j.phpro.2016.08.002.
  • X. Wang et al., "Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review," Biomaterials, vol. 83, pp. 127–141, 2016. doi: 10.1016/j.biomaterials.2016.01.012.
  • G. Reinhart and S. Teufelhart, "Load-Adapted Design of Generative Manufactured Lattice Structures," Physics Procedia, vol. 12, PART 1, pp. 385–392, 2011. doi: 10.1016/j.phpro.2011.03.049.
  • S. Bose, S. Vahabzadeh, and A. Bandyopadhyay, "Bone Tissue Engineering Using 3D Printing," Materials Today, vol. 16, no. 12, pp. 496–504, 2013. doi: 10.1016/j.mattod.2013.11.017.
  • I. Goda et al., "Topology Optimization of Bone Using Cubic Material Design and Evolutionary Methods Based on Internal Remodeling," Mechanics Research Communications, vol. 95, pp. 52–60, 2019. doi: 10.1016/j.mechrescom.2018.12.003.
  • K. Haase and G. Rouhi, "Prediction of Stress Shielding Around an Orthopedic Screw: Using Stress and Strain Energy Density as Mechanical Stimuli," Computers in Biology and Medicine, vol. 43, no. 11, pp. 1748, 2013. doi: 10.1016/j.compbiomed.2013.07.032.
  • A. A. Al-Tamimi et al., "Topology Optimised Metallic Bone Plates Produced by Electron Beam Melting: A Mechanical and Biological Study," The International Journal of Advanced Manufacturing Technology, vol. 104, no. 1–4, pp. 195–210, 2019. doi: 10.1007/s00170-019-03866-0.
  • Y. He et al., "Solid-Lattice Hip Prosthesis Design: Applying Topology and Lattice Optimization to Reduce Stress Shielding from Hip Implants," in 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. doi: 10.1115/dmd2018-6804.
  • H. Weinans, D. R. Sumner, R. Igloria, and R. N. Natarajan, "Sensitivity of Periprosthetic Stress-Shielding to Load and the Bone Density-Modulus Relationship in Subject-Specific Finite Element Models," Journal of Biomechanics, vol. 33, no. 7, pp. 809–817, 2000. doi: 10.1016/s0021-9290(00)00036-1.
  • M. Fraldi, L. Esposito, G. Perrella, A. Cutolo, and S. C. Cowin, "Topological Optimization in Hip Prosthesis Design," Biomechanics and modeling in mechanobiology, vol. 9, no. 4, pp. 389–402, 2010. doi: 10.1007/s10237-009-0183-0.
  • T. Iqbal et al., "A General Multi-Objective Topology Optimization Methodology Developed for Customized Design of Pelvic Prostheses," Medical Engineering & Physics, vol. 69, pp. 8–16, 2019. doi: 10.1016/j.medengphy.2019.06.008.
  • E. Dalpadulo, F. Pini, and F. Leali, "Integrated CAD Platform Approach for Design for Additive Manufacturing of High Performance Automotive Components," International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 14, no. 3, pp. 899–909, 2020a. doi: 10.1007/s12008-020-00684-7.
  • D. Walton and H. Moztarzadeh, "Design and Development of an Additive Manufactured Component by Topology Optimisation," Procedia CIRP, vol. 60, pp. 205–210, 2017. doi: 10.1016/j.procir.2017.03.027.
  • O. Vaverka, D. Koutny, and D. Palousek, "Topologically Optimized Axle Carrier for Formula Student Produced by Selective Laser Melting," Rapid Prototyping Journal, vol. 25, no. 9, pp. 1545–1551, 2019. doi: 10.1108/rpj-07-2018-0171.
  • S. N. Reddy et al., "Application of Topology Optimization and Design for Additive Manufacturing Guidelines on an Automotive Component," in Volume 2A: 42nd Design Automation Conference. American Society of Mechanical Engineers, 2016b. doi: 10.1115/detc2016-59719.
  • H. Bikas, J. Stavridis, P. Stavropoulos, and G. Chryssolouris, "A Design Framework to Replace Conventional Manufacturing Processes with Additive Manufacturing for Structural Components: A Formula Student Case Study," Procedia CIRP, vol. 57, pp. 710–715, 2016a. doi: 10.1016/j.procir.2016.11.123.
  • A. Großmann, P. Weis, C. Clemen, and C. Mittelstedt, "Optimization and re-Design of a Metallic Riveting Tool for Additive Manufacturing–a Case Study," Addit Manuf, vol. 31, 100892, 2020. doi: 10.1016/j.addma.2019.100892.
  • E. Tyflopoulos, M. Lien, and M. Steinert, "Optimization of Brake Calipers Using Topology Optimization for Additive Manufacturing," Applied Sciences, vol. 11, no. 4, 1437, 2021. doi: 10.3390/app11041437.
  • S. Junk, C. Fleig, and B. Fink, "Improvement of Sustainability Through the Application of Topology Optimization in the Additive Manufacturing of a Brake Mount," in Sustainable Design and Manufacturing 2017. Springer International Publishing, pp. 151–161, 2017. doi: 10.1007/978-3-319-57078-5_15.
  • P. Barreiro et al., "New Improvement Opportunities Through Applying Topology Optimization Combined with 3D Printing to the Construction of Gearbox Housings," Forschung im Ingenieurwesen, vol. 83, no. 3, pp. 669–681, 2019. doi: 10.1007/s10010-019-00374-1.
  • M. Hunar et al., "Comprehensive View on Racing Car Upright Design and Manufacturing," Symmetry (Basel), vol. 12, no. 6, 1020, 2020. doi: 10.3390/sym12061020.
  • T. R. Marchesi et al., "Topologically Optimized Diesel Engine Support Manufactured with Additive Manufacturing," IFAC-PapersOnLine, vol. 48, no. 3, pp. 2333–2338, 2015. doi: 10.1016/j.ifacol.2015.06.436.
  • S. Mantovani, G. A. Campo, and A. Ferrari, "Additive Manufacturing and Topology Optimization: A Design Strategy for a Steering Column Mounting Bracket Considering Overhang Constraints," Proc Inst Mech Eng C J Mech Eng Sci, vol. 235, no. 10, pp. 1703–1723, 2020. doi: 10.1177/0954406220917717.
  • D. B. Ngim, J.-S. Liu, and R. C. Soar, "Design Optimization for Manufacturability of Axisymmetric Continuum Structures Using Metamorphic Development," International Journal of Solids and Structures, vol. 44, no. 2, pp. 685–704, 2007. doi: 10.1016/j.ijsolstr.2006.05.016.
  • P. Herbin, D. Grzesiak, and M. A. Krolikowski, "Topology Optimisation Aimed at Additive–SLM Manufacturing of Metal Parts of ExoArm 7-DOF," in Lecture Notes in Mechanical Engineering. Springer International Publishing, pp. 533–541, 2017. doi: 10.1007/978-3-319-68619-6_51.
  • S. Huang, X. Deng, and L. K. Lam, "Integrated Design Framework of 3D Printed Planar Stainless Tubular Joint: Modelling, Optimization, Manufacturing, and Experiment," Thin-Walled Structures, vol. 169, 108463, 2021. doi: 10.1016/j.tws.2021.108463.
  • M. E. Lynch et al., "Design and Topology/Shape Structural Optimisation for Additively Manufactured Cold Sprayed Components," Virtual and Physical Prototyping, vol. 8, no. 3, pp. 213–231, 2013. doi: 10.1080/17452759.2013.837629.
  • T. Wu, S. A. Jahan, Y. Zhang, J. Zhang, H. Elmounayri, and A. Tovar, "Design Optimization of Plastic Injection Tooling for Additive Manufacturing," Procedia Manuf, vol. 10, pp. 923–934, 2017. doi: 10.1016/j.promfg.2017.07.082.
  • J. C. Steuben, J. G. Michopoulos, A. P. Iliopoulos, and A. J. Birnbaum, "Functional Performance Tailoring of Additively Manufactured Components via Topology Optimization," in Volume 1: 37th Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. doi: 10.1115/detc2017-67600.
  • J. E. Barnes, "Speed is Relative in AM: A Data-Driven Comparison of Multi-Laser Powder Bed Fusion and Binder Jet Processing," Additive Manufacturing Magazine, 2021a. [Online]. https://www.additivemanufacturing.media/articles/speed-is-relative-in-am-a-data-driven-comparison-of-multi-laser-powder-bed-fusion-and-binder-jet-processing.
  • J. E. Barnes, "Making a Slow Decision on a Fast Technology: Evaluating the Business Case for Multi-Laser Powder Bed Fusion," Additive Manufacturing Magazine, 2021b. [Online]. Available: https://www.additivemanufacturing.media/articles/making-a-slow-decision-on-a-fast-technology-evaluating-the-business-case-for-multi-laser-powder-bed-fusion.
Year 2023, , 552 - 565, 31.12.2023
https://doi.org/10.34186/klujes.1404647

Abstract

References

  • A. Bacciaglia, A. Ceruti, and A. Liverani, "Additive Manufacturing Challenges and Future Developments in the Next Ten Years," in Design Tools and Methods in Industrial Engineering, pp. 891–902, 2020. doi: 10.1007/978-3-030-31154-4_76.
  • B. Blakey-Milner et al., "Metal Additive Manufacturing in Aerospace: A Review," Materials and Design, vol. 209, 110008, 2021. doi: 10.1016/j.matdes.2021.110008.
  • T. Pan, S. Karnati, and F. Liou, "General Rules for Pre-Process Planning in Powder Bed Fusion System–A Review," in Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium–an Additive Manufacturing Conference, SFF 2018, pp. 1161–1173, 2020b.
  • T. DebRoy et al., "Additive Manufacturing of Metallic Components–Process, Structure and Properties," Progress in Materials Science, vol. 92, pp. 112–224, 2018. doi: 10.1016/j.pmatsci.2017.10.001.
  • Y. Kok et al., "Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review," Materials and Design, vol. 139, pp. 565–586, 2018. doi: 10.1016/j.matdes.2017.11.021.
  • A. Gisario et al., "Metal Additive Manufacturing in the Commercial Aviation Industry: A Review," Journal of Manufacturing Systems, vol. 53, pp. 124–149, 2019. doi: 10.1016/j.jmsy.2019.08.005.
  • A. Bandyopadhyay and K. D. Traxel, "Invited Review Article: Metal-Additive Manufacturing–Modeling Strategies for Application-Optimized Designs," Addit Manuf, vol. 22, pp. 758–774, 2018. doi: 10.1016/j.addma.2018.06.024.
  • S. Srivastava et al., "Measurement and Mitigation of Residual Stress in Wire-Arc Additive Manufacturing: A Review of Macro-Scale Continuum Modelling Approach," Archives of Computational Methods in Engineering, vol. 28, no. 5, pp. 3491–3515, 2020a. doi: 10.1007/s11831-020-09511-4.
  • S. M. Hashemi et al., "Computational Modelling of Process–Structure–Property–Performance Relationships in Metal Additive Manufacturing: A Review," International Materials Reviews, pp. 1–46, 2021. doi: 10.1080/09506608.2020.1868889.
  • J. Zhu, H. Zhou, C. Wang, L. Zhou, S. Yuan, and W. Zhang, "A Review of Topology Optimization for Additive Manufacturing: Status and Challenges," Chinese Journal of Aeronautics, vol. 34, no. 1, pp. 91–110, 2021b. doi: 10.1016/j.cja.2020.09.020. M. Süß et al., "Aerospace Case Study on Topology Optimization for Additive Manufacturing," DDMC 2016 Proceedings, March 2016: 6.
  • M. Seabra et al., "Selective Laser Melting (SLM) and Topology Optimization for Lighter Aerospace Componentes," Procedia Structural Integrity, vol. 1, pp. 289–296, 2016. doi: 10.1016/j.prostr.2016.02.039.
  • L. Magerramova, B. Vasilyev, and V. Kinzburskiy, "Novel Designs of Turbine Blades for Additive Manufacturing," in Volume 5C: Heat Transfer. American Society of Mechanical Engineers, 2016. doi: 10.1115/gt2016-56084.
  • J. D. López-Castro et al., "Topological Optimization and Manufacturing by Direct Metal Laser Sintering of an Aeronautical Part in 15-5PH Stainless Steel," Procedia Manuf, vol. 13, pp. 818–824, 2017. doi: 10.1016/j.promfg.2017.09.121.
  • D. J. Munk, D. J. Auld, G. P. Steven, and G. A. Vio, "On the Benefits of Applying Topology Optimization to Structural Design of Aircraft Components," Structural and Multidisciplinary Optimization, vol. 60, no. 3, pp. 1245–1266, 2019. doi: 10.1007/s00158-019-02250-6.
  • A. Gaymann, F. Montomoli, and M. Pietropaoli, "Design for Additive Manufacturing: Valves Without Moving Parts," in Volume 2C: Turbomachinery. American Society of Mechanical Engineers, 2017. doi: 10.1115/gt2017-64872.
  • A. W. Gebisa and H. G. Lemu, "A Case Study on Topology Optimized Design for Additive Manufacturing," IOP Conf Ser Mater Sci Eng, vol. 276, 12026, 2017a. doi: 10.1088/1757-899x/276/1/012026.
  • K. V. Fetisov and P. V. Maksimov, "Topology Optimization and Laser Additive Manufacturing in Design Process of Efficiency Lightweight Aerospace Parts," Journal of Physics: Conference Series, vol. 1015, 52006, 2018. doi: 10.1088/1742-6596/1015/5/052006.
  • H. Herzog et al., "Optical Fabrication of Lightweighted 3D Printed Mirrors," in Optomechanical Engineering 2015. SPIE, 2015. doi: 10.1117/12.2188197.
  • R. Hu et al., "Design Optimization Method for Additive Manufacturing of the Primary Mirror of a Large-Aperture Space Telescope," Journal of Aerospace Engineering, vol. 30, no. 3, 4016093–4000000, 2017. doi: 10.1061/(asce)as.1943-5525.0000690.
  • M. E. Orme et al., "Designing for Additive Manufacturing: Lightweighting Through Topology Optimization Enables Lunar Spacecraft," Journal of Mechanical Design, vol. 139, no. 10, 2017. doi: 10.1115/1.4037304.
  • S. Singamneni et al., "Additive Manufacturing for the Aircraft Industry: A Review," Journal of Aeronautics & Aerospace Engineering, vol. 8, no. 1, 13, 2019. doi: 10.4172/2329-6542.1000214.
  • Xillo, "The World’s First 3D Printed Total Jaw Reconstruction," 2011. Available: https://www.xilloc.com/patients/stories/total-mandibular-implant/.
  • M. Leary, "Design of Titanium Implants for Additive Manufacturing," in Titanium in Medical and Dental Applications, edited by F. H. Froes and M. Qian. Elsevier Inc., 2018. doi: 10.1016/B978-0-12-812456-7.00009-3.
  • D. Shidid, M. Leary, P. Choong, and M. Brandt, "Just-in-Time Design and Additive Manufacture of Patient-Specific Medical Implants," Physics Procedia, vol. 83, pp. 4–14, 2016. doi: 10.1016/j.phpro.2016.08.002.
  • X. Wang et al., "Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review," Biomaterials, vol. 83, pp. 127–141, 2016. doi: 10.1016/j.biomaterials.2016.01.012.
  • G. Reinhart and S. Teufelhart, "Load-Adapted Design of Generative Manufactured Lattice Structures," Physics Procedia, vol. 12, PART 1, pp. 385–392, 2011. doi: 10.1016/j.phpro.2011.03.049.
  • S. Bose, S. Vahabzadeh, and A. Bandyopadhyay, "Bone Tissue Engineering Using 3D Printing," Materials Today, vol. 16, no. 12, pp. 496–504, 2013. doi: 10.1016/j.mattod.2013.11.017.
  • I. Goda et al., "Topology Optimization of Bone Using Cubic Material Design and Evolutionary Methods Based on Internal Remodeling," Mechanics Research Communications, vol. 95, pp. 52–60, 2019. doi: 10.1016/j.mechrescom.2018.12.003.
  • K. Haase and G. Rouhi, "Prediction of Stress Shielding Around an Orthopedic Screw: Using Stress and Strain Energy Density as Mechanical Stimuli," Computers in Biology and Medicine, vol. 43, no. 11, pp. 1748, 2013. doi: 10.1016/j.compbiomed.2013.07.032.
  • A. A. Al-Tamimi et al., "Topology Optimised Metallic Bone Plates Produced by Electron Beam Melting: A Mechanical and Biological Study," The International Journal of Advanced Manufacturing Technology, vol. 104, no. 1–4, pp. 195–210, 2019. doi: 10.1007/s00170-019-03866-0.
  • Y. He et al., "Solid-Lattice Hip Prosthesis Design: Applying Topology and Lattice Optimization to Reduce Stress Shielding from Hip Implants," in 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. doi: 10.1115/dmd2018-6804.
  • H. Weinans, D. R. Sumner, R. Igloria, and R. N. Natarajan, "Sensitivity of Periprosthetic Stress-Shielding to Load and the Bone Density-Modulus Relationship in Subject-Specific Finite Element Models," Journal of Biomechanics, vol. 33, no. 7, pp. 809–817, 2000. doi: 10.1016/s0021-9290(00)00036-1.
  • M. Fraldi, L. Esposito, G. Perrella, A. Cutolo, and S. C. Cowin, "Topological Optimization in Hip Prosthesis Design," Biomechanics and modeling in mechanobiology, vol. 9, no. 4, pp. 389–402, 2010. doi: 10.1007/s10237-009-0183-0.
  • T. Iqbal et al., "A General Multi-Objective Topology Optimization Methodology Developed for Customized Design of Pelvic Prostheses," Medical Engineering & Physics, vol. 69, pp. 8–16, 2019. doi: 10.1016/j.medengphy.2019.06.008.
  • E. Dalpadulo, F. Pini, and F. Leali, "Integrated CAD Platform Approach for Design for Additive Manufacturing of High Performance Automotive Components," International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 14, no. 3, pp. 899–909, 2020a. doi: 10.1007/s12008-020-00684-7.
  • D. Walton and H. Moztarzadeh, "Design and Development of an Additive Manufactured Component by Topology Optimisation," Procedia CIRP, vol. 60, pp. 205–210, 2017. doi: 10.1016/j.procir.2017.03.027.
  • O. Vaverka, D. Koutny, and D. Palousek, "Topologically Optimized Axle Carrier for Formula Student Produced by Selective Laser Melting," Rapid Prototyping Journal, vol. 25, no. 9, pp. 1545–1551, 2019. doi: 10.1108/rpj-07-2018-0171.
  • S. N. Reddy et al., "Application of Topology Optimization and Design for Additive Manufacturing Guidelines on an Automotive Component," in Volume 2A: 42nd Design Automation Conference. American Society of Mechanical Engineers, 2016b. doi: 10.1115/detc2016-59719.
  • H. Bikas, J. Stavridis, P. Stavropoulos, and G. Chryssolouris, "A Design Framework to Replace Conventional Manufacturing Processes with Additive Manufacturing for Structural Components: A Formula Student Case Study," Procedia CIRP, vol. 57, pp. 710–715, 2016a. doi: 10.1016/j.procir.2016.11.123.
  • A. Großmann, P. Weis, C. Clemen, and C. Mittelstedt, "Optimization and re-Design of a Metallic Riveting Tool for Additive Manufacturing–a Case Study," Addit Manuf, vol. 31, 100892, 2020. doi: 10.1016/j.addma.2019.100892.
  • E. Tyflopoulos, M. Lien, and M. Steinert, "Optimization of Brake Calipers Using Topology Optimization for Additive Manufacturing," Applied Sciences, vol. 11, no. 4, 1437, 2021. doi: 10.3390/app11041437.
  • S. Junk, C. Fleig, and B. Fink, "Improvement of Sustainability Through the Application of Topology Optimization in the Additive Manufacturing of a Brake Mount," in Sustainable Design and Manufacturing 2017. Springer International Publishing, pp. 151–161, 2017. doi: 10.1007/978-3-319-57078-5_15.
  • P. Barreiro et al., "New Improvement Opportunities Through Applying Topology Optimization Combined with 3D Printing to the Construction of Gearbox Housings," Forschung im Ingenieurwesen, vol. 83, no. 3, pp. 669–681, 2019. doi: 10.1007/s10010-019-00374-1.
  • M. Hunar et al., "Comprehensive View on Racing Car Upright Design and Manufacturing," Symmetry (Basel), vol. 12, no. 6, 1020, 2020. doi: 10.3390/sym12061020.
  • T. R. Marchesi et al., "Topologically Optimized Diesel Engine Support Manufactured with Additive Manufacturing," IFAC-PapersOnLine, vol. 48, no. 3, pp. 2333–2338, 2015. doi: 10.1016/j.ifacol.2015.06.436.
  • S. Mantovani, G. A. Campo, and A. Ferrari, "Additive Manufacturing and Topology Optimization: A Design Strategy for a Steering Column Mounting Bracket Considering Overhang Constraints," Proc Inst Mech Eng C J Mech Eng Sci, vol. 235, no. 10, pp. 1703–1723, 2020. doi: 10.1177/0954406220917717.
  • D. B. Ngim, J.-S. Liu, and R. C. Soar, "Design Optimization for Manufacturability of Axisymmetric Continuum Structures Using Metamorphic Development," International Journal of Solids and Structures, vol. 44, no. 2, pp. 685–704, 2007. doi: 10.1016/j.ijsolstr.2006.05.016.
  • P. Herbin, D. Grzesiak, and M. A. Krolikowski, "Topology Optimisation Aimed at Additive–SLM Manufacturing of Metal Parts of ExoArm 7-DOF," in Lecture Notes in Mechanical Engineering. Springer International Publishing, pp. 533–541, 2017. doi: 10.1007/978-3-319-68619-6_51.
  • S. Huang, X. Deng, and L. K. Lam, "Integrated Design Framework of 3D Printed Planar Stainless Tubular Joint: Modelling, Optimization, Manufacturing, and Experiment," Thin-Walled Structures, vol. 169, 108463, 2021. doi: 10.1016/j.tws.2021.108463.
  • M. E. Lynch et al., "Design and Topology/Shape Structural Optimisation for Additively Manufactured Cold Sprayed Components," Virtual and Physical Prototyping, vol. 8, no. 3, pp. 213–231, 2013. doi: 10.1080/17452759.2013.837629.
  • T. Wu, S. A. Jahan, Y. Zhang, J. Zhang, H. Elmounayri, and A. Tovar, "Design Optimization of Plastic Injection Tooling for Additive Manufacturing," Procedia Manuf, vol. 10, pp. 923–934, 2017. doi: 10.1016/j.promfg.2017.07.082.
  • J. C. Steuben, J. G. Michopoulos, A. P. Iliopoulos, and A. J. Birnbaum, "Functional Performance Tailoring of Additively Manufactured Components via Topology Optimization," in Volume 1: 37th Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. doi: 10.1115/detc2017-67600.
  • J. E. Barnes, "Speed is Relative in AM: A Data-Driven Comparison of Multi-Laser Powder Bed Fusion and Binder Jet Processing," Additive Manufacturing Magazine, 2021a. [Online]. https://www.additivemanufacturing.media/articles/speed-is-relative-in-am-a-data-driven-comparison-of-multi-laser-powder-bed-fusion-and-binder-jet-processing.
  • J. E. Barnes, "Making a Slow Decision on a Fast Technology: Evaluating the Business Case for Multi-Laser Powder Bed Fusion," Additive Manufacturing Magazine, 2021b. [Online]. Available: https://www.additivemanufacturing.media/articles/making-a-slow-decision-on-a-fast-technology-evaluating-the-business-case-for-multi-laser-powder-bed-fusion.
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Optimization Techniques in Mechanical Engineering, Machine Theory and Dynamics
Journal Section Issue
Authors

Melih Canlıdinç 0000-0002-4011-9490

Publication Date December 31, 2023
Submission Date December 13, 2023
Acceptance Date December 19, 2023
Published in Issue Year 2023

Cite

APA Canlıdinç, M. (2023). Topoloji Optimizasyonu ile Metal Eklemeli İmalat Yönteminin Endüstriyel Uygulamaları. Kirklareli University Journal of Engineering and Science, 9(2), 552-565. https://doi.org/10.34186/klujes.1404647