Review
BibTex RIS Cite

Yapı Malzemelerinde PCM Kullanımının Binaların Isıl Özelliklerine Etkisi

Year 2024, , 66 - 76, 30.06.2024
https://doi.org/10.34186/klujes.1476480

Abstract

Enerji, modern yaşamın temel itici güçlerinden biridir ve insan hayatında hayati bir öneme sahiptir. Gelişmiş toplumlarda, enerjinin etkin ve verimli kullanımı bireylerin konforunu artırırken, özellikle fosil yakıtlara dayalı enerji üretiminin çevresel etkilerini azaltmaktadır. Bu bağlamda, binalarda enerji tasarrufu büyük bir önem taşımaktadır; çünkü yapıların enerji tüketimi toplam enerji kullanımının önemli bir kısmını oluşturmaktadır. Yapı malzemelerinde faz değiştiren malzeme (PCM) kullanımı, binaların termal performansını artırmak için etkili bir yol olarak öne çıkmaktadır. PCM'ler, faz değişimi sırasında ısıyı emer ve/veya salarlar, böylece iç mekân sıcaklığını dengeleyerek klima gibi iklimlendirme sistemlerinin enerji tüketimini azaltmaktadır ve bina içinde daha istikrarlı bir ısıl ortam sağlamaktadır. Bu da hem enerji maliyetlerinde tasarruf sağlamakta hem de çevresel etkileri azaltmaktadır, böylece sürdürülebilir bir yaşam alanı oluşturmaktadır. Bu makalede binalarda PCM kullanımı konusunda çalışılarak son 5 yılda gerçekleştirilen PCM katkılanmış duvar harç malzemelerinin binaların ısıl özelliklerine etkisi araştırılmıştır. Sonuçlar faz değiştiren malzeme kullanımının umut verici çıktılar oluşturduğunu yansıtmakta ve yapıların ısıl özelliklerini iyileştirdiğini göstermektedir.

References

  • Al-Yasiri, Q. & Szabo, M. (2023). Experimental study of PCM-enhanced building envelope towards energy-saving and decarbonisation in a severe hot climate. Energy & Buildings, 279, 112680. https://doi.org/10.1016/j.enbuild.2022.112680
  • Anter, A. G., Sultan, A. A., Hegazi, A. A. & El Bouz, M. A. (2023). Thermal performance and energy saving using phase change materials (PCM) integrated in building walls. Journal of Energy Storage, 67, 107568. https://doi.org/10.1016/j.est.2023.107568
  • Cesari, S., Baccega, E., Emmi, G. & Bottarelli, M. (2024). Enhancement of a radiant floor with a checkerboard pattern of two PCMs for heating and cooling: Results of a real-scale monitoring campaign. Applied Thermal Engineering, 246, 122887. https://doi.org/10.1016/j.applthermaleng.2024.122887
  • Cunha, S., Castro, J. & Aguiar, J. B. (2023). Impact of gypsum mortars functionalized with phase change materials in buildings. Journal of Energy Storage, 72, 108608. https://doi.org/10.1016/j.est.2023.108608
  • Frahat, N. B., Amin, M., Heniegal, A. M. & Ibrahim, O. M. O. (2023). Optimizing microencapsulated PCM ratios of sustainable cement mortar for energy savings in buildings. Construction and Building Materials, 391, 11844. https://doi.org/10.1016/j.conbuildmat.2023.131844
  • Gencel, O., Hekimoglu, G., Sarı, A., Ustaoglu, A., Subasi, S., Marasli, M., Erdogmus, E. & Memon, S. A. (2022). Glass fiber reinforced gypsum composites with microencapsulated PCM as novel building thermal energy storage material. Construction and Building Materials, 340, 127788. https://doi.org/10.1016/j.conbuildmat.2022.127788
  • Izadi, M., Taghavi, S. F., Safavi, S. H. N., Afsharpanah, F. & Yaici, W. (2023). Thermal management of shelter building walls by PCM macro-encapsulation in commercial hollow bricks. Case Studies in Thermal Engineering, 47, 103081. https://doi.org/10.1016/j.csite.2023.103081
  • Jiang, J., Lei, L., Jin, C., Liu, T., Huang, J., Wu, Y., Lv, S., Lu, Z., Zheng, L. & Li, J. (2023). Preparation, microstructure, performance and mortar application of paraffin/titanium-bearing blast furnace slag phase change aggregate. Case Studies in Construction Materials, 19, e02262. https://doi.org/10.1016/j.cscm.2023.e02262
  • Lakshan, R. R., Rosini, A. M., Sathiyan, K., Gangadharan, D., Sathyan, D. & Mini, K. M. (2021). Study on thermal insulating properties of PCM incorporated wall panels. Materials Today: Proceedings, 46, 5118-5122. https://doi.org/10.1016/j.matpr.2020.10.501
  • Li, Q., Ju, Z., Wang, Z., Ma, L., Jiang, W., Li, D. & Jia, J. (2022). Thermal performance and economy of PCM foamed cement walls for buildings in different climate zones. Energy & Buildings, 277, 112470. https://doi.org/10.1016/j.enbuild.2022.112470
  • Li, G., Xu, G. & Zhang, J. (2024). Experimental investigation of thermal and mechanical characteristics of slag cement mortars with PCM for radiant floors. Case Studies in Construction Materials, 20, e02958. https://doi.org/10.1016/j.cscm.2024.e02958
  • Lu, S., Zheng, J., Wang, R. & Zhu, J. (2023). Thermal performance research on a novel coupled heating system combined solar air heater with ventilation PCM wall. Solar Energy, 265, 112100. https://doi.org/10.1016/j.solener.2023.112100
  • Ma, L., Luo, D., Hu, H., Li, Q., Yang, R., Zhang, S. & Li, D. (2023). Energy performance of a rural residential building with PCM-silica aerogel sunspace in severe cold regions. Energy & Buildings, 280, 112719. https://doi.org/10.1016/j.enbuild.2022.112719
  • Nandy, A., Houl, Y., Zhao, W. & D’Souza, N. A. (2023). Thermal heat transfer and energy modeling through incorporation of phase change materials (PCMs) into polyurethane foam. Renewable and Sustainable Energy Reviews, 182, 113410. https://doi.org/10.1016/j.rser.2023.113410
  • Ong, P. J., Lum, Y. Y., Soo, X. Y. D., Wang, S., Wang, P., Chi, D., Liu, H., Kai, D., Lee, C. L. K., Yan, Q., Xu, J., Loh, X. J. & Zhu, Q. (2023). Integration of phase change material and thermal insulation material as a passive strategy for building cooling in the tropics. Construction and Building Materials, 386, 131583. https://doi.org/10.1016/j.conbuildmat.2023.131583
  • Pirasaci, T. & Sunol, A. (2024). Potential of phase change materials (PCM) for building thermal performance enhancement: PCM-composite aggregate application throughout Turkey. Energy, 292, 130589. https://doi.org/10.1016/j.energy.2024.130589
  • Ryms, M., Januszewicz, K., Haustein, E., Kazimierski, P. & Lewandowski, W. M. (2022). Thermal properties of a cement composite containing phase change materials (PCMs) with post-pyrolytic char obtained from spent tyres as a carrier. Energy, 239, 121936. https://doi.org/10.1016/j.energy.2021.121936
  • Salgueiro, T., Samagaio, A., Gonçalves, M., Figueiredo, A., Labrincha, J. & Silva, L. (2021). Incorporation of phase change materials in an expanded clay containing mortar for indoor thermal regulation of buildings. Journal of Energy Storage, 36, 102385. https://doi.org/10.1016/j.est.2021.102385
  • Sarcinella, A., de Aguiar, J. L. B., Jesus, C. & Frigione, M. (2023). Thermal properties of PEG-based form-stable Phase Change Materials (PCMs) incorporated in mortars for energy efficiency of buildings. Journal of Energy Storage, 67, 107545. https://doi.org/10.1016/j.est.2023.107545
  • Sarı, A., Nas, M., Yeşilata, B., Ustaoğlu, A., Erdoğmuş, E., Torlaklı, H., Hekimoğlu, G. & Gencel, O. (2024). A novel cement mortar comprising natural zeolite/dodecyl alcohol shape stable composite phase change material for energy effective buildings. Journal of Energy Storage, 87, 111266. https://doi.org/10.1016/j.est.2024.111266
  • Şimşek, A. (2018). Alanyazın taraması. Ali ŞİMŞEK (Ed.), Sosyal Bilimlerde Araştırma Yöntemleri (s. 52-79) Eskişehir: T.C. Anadolu Üniversitesi Yayınevi.
  • Taj, S. A., Khalid, W., Nazir, H., Khan, A., Sajid, M., Waqas, A., Hussain, A., Ali, M. & Zaki, S. A. (2024). Experimental investigation of eutectic PCM incorporated clay brick for thermal management of building envelope. Journal of Energy Storage, 84, 110838. https://doi.org/10.1016/j.est.2024.110838
  • Tamer, T., Dino, I. G., Baker, D. K. & Akgül, C. M. (2023). Coupling PCM wallboard utilization with night Ventilation: Energy efficiency and overheating risk in office buildings under climate change impact. Energy & Buildings, 298, 113482. https://doi.org/10.1016/j.enbuild.2023.113482
  • Telkes, M. & Raymond, E. (1949). Storing solar heat in chemicals – a report on the Dover house. Heating and Ventilating, 49, 80-86. https://www.osti.gov/biblio/5118227
  • Topçu, İ. B., Bayram, M., Ustaoğlu, A., Hekimoğlu, G., Erdoğmuş, E., Sarı, A., Gencel, O. & Ozbakkaloglu, T. (2024). Innovative cementitious mortar incorporated with sepiolite based shape-stable phase change material for thermal controlling of buildings. Construction and Building Materials, 426, 136124. https://doi.org/10.1016/j.conbuildmat.2024.136124
  • Vargas, V. Z., Claros-Marfil, L. J., Sandoval, G. F. B., Rojas, B. H., Santos, A. G. & Gonzalez, F. J. N. (2024). Experimental assessment of energy storage in microcapsulated paraffin PCM Cement mortars. Case Studies in Construction Materials, 20, e02959. https://doi.org/10.1016/j.cscm.2024.e02959
  • Wang, G., Li, X., Chang, C. & Ju, H. (2024a). Multi-objective passive design and climate effects for office buildings integrating phase change material (PCM) in a cold region of China. Journal of Energy Storage, 82, 110502. https://doi.org/10.1016/j.est.2024.110502
  • Wang, M., Liu, S., Han, J., Bai, R., Gao, W. & Zhou, M. (2024b). A novel capric-stearic acid/expanded perlite-based cementitious mortar for thermal energy storage. Solar Energy, 273, 112501. https://doi.org/10.1016/j.solener.2024.112501
  • Wang, F., Qiao, Z., Zheng, W., Li, Y., Gou, Y., Qi, Y. & Li, H. (2024c). Preparing gypsum-based self-levelling energy storage mortar via fly ash cenospheres/paraffin used for floor radiant heating. Construction and Building Materials, 423, 135865. https://doi.org/10.1016/j.conbuildmat.2024.135865
  • Xiao, Y., Zhang, T., Liu, Z., Fei, F. & Fukuda, H. (2023). Optimizing energy efficiency in HSCW buildings in China through temperature-controlled PCM Trombe wall system. Energy, 278, 128015. https://doi.org/10.1016/j.energy.2023.128015
Year 2024, , 66 - 76, 30.06.2024
https://doi.org/10.34186/klujes.1476480

Abstract

References

  • Al-Yasiri, Q. & Szabo, M. (2023). Experimental study of PCM-enhanced building envelope towards energy-saving and decarbonisation in a severe hot climate. Energy & Buildings, 279, 112680. https://doi.org/10.1016/j.enbuild.2022.112680
  • Anter, A. G., Sultan, A. A., Hegazi, A. A. & El Bouz, M. A. (2023). Thermal performance and energy saving using phase change materials (PCM) integrated in building walls. Journal of Energy Storage, 67, 107568. https://doi.org/10.1016/j.est.2023.107568
  • Cesari, S., Baccega, E., Emmi, G. & Bottarelli, M. (2024). Enhancement of a radiant floor with a checkerboard pattern of two PCMs for heating and cooling: Results of a real-scale monitoring campaign. Applied Thermal Engineering, 246, 122887. https://doi.org/10.1016/j.applthermaleng.2024.122887
  • Cunha, S., Castro, J. & Aguiar, J. B. (2023). Impact of gypsum mortars functionalized with phase change materials in buildings. Journal of Energy Storage, 72, 108608. https://doi.org/10.1016/j.est.2023.108608
  • Frahat, N. B., Amin, M., Heniegal, A. M. & Ibrahim, O. M. O. (2023). Optimizing microencapsulated PCM ratios of sustainable cement mortar for energy savings in buildings. Construction and Building Materials, 391, 11844. https://doi.org/10.1016/j.conbuildmat.2023.131844
  • Gencel, O., Hekimoglu, G., Sarı, A., Ustaoglu, A., Subasi, S., Marasli, M., Erdogmus, E. & Memon, S. A. (2022). Glass fiber reinforced gypsum composites with microencapsulated PCM as novel building thermal energy storage material. Construction and Building Materials, 340, 127788. https://doi.org/10.1016/j.conbuildmat.2022.127788
  • Izadi, M., Taghavi, S. F., Safavi, S. H. N., Afsharpanah, F. & Yaici, W. (2023). Thermal management of shelter building walls by PCM macro-encapsulation in commercial hollow bricks. Case Studies in Thermal Engineering, 47, 103081. https://doi.org/10.1016/j.csite.2023.103081
  • Jiang, J., Lei, L., Jin, C., Liu, T., Huang, J., Wu, Y., Lv, S., Lu, Z., Zheng, L. & Li, J. (2023). Preparation, microstructure, performance and mortar application of paraffin/titanium-bearing blast furnace slag phase change aggregate. Case Studies in Construction Materials, 19, e02262. https://doi.org/10.1016/j.cscm.2023.e02262
  • Lakshan, R. R., Rosini, A. M., Sathiyan, K., Gangadharan, D., Sathyan, D. & Mini, K. M. (2021). Study on thermal insulating properties of PCM incorporated wall panels. Materials Today: Proceedings, 46, 5118-5122. https://doi.org/10.1016/j.matpr.2020.10.501
  • Li, Q., Ju, Z., Wang, Z., Ma, L., Jiang, W., Li, D. & Jia, J. (2022). Thermal performance and economy of PCM foamed cement walls for buildings in different climate zones. Energy & Buildings, 277, 112470. https://doi.org/10.1016/j.enbuild.2022.112470
  • Li, G., Xu, G. & Zhang, J. (2024). Experimental investigation of thermal and mechanical characteristics of slag cement mortars with PCM for radiant floors. Case Studies in Construction Materials, 20, e02958. https://doi.org/10.1016/j.cscm.2024.e02958
  • Lu, S., Zheng, J., Wang, R. & Zhu, J. (2023). Thermal performance research on a novel coupled heating system combined solar air heater with ventilation PCM wall. Solar Energy, 265, 112100. https://doi.org/10.1016/j.solener.2023.112100
  • Ma, L., Luo, D., Hu, H., Li, Q., Yang, R., Zhang, S. & Li, D. (2023). Energy performance of a rural residential building with PCM-silica aerogel sunspace in severe cold regions. Energy & Buildings, 280, 112719. https://doi.org/10.1016/j.enbuild.2022.112719
  • Nandy, A., Houl, Y., Zhao, W. & D’Souza, N. A. (2023). Thermal heat transfer and energy modeling through incorporation of phase change materials (PCMs) into polyurethane foam. Renewable and Sustainable Energy Reviews, 182, 113410. https://doi.org/10.1016/j.rser.2023.113410
  • Ong, P. J., Lum, Y. Y., Soo, X. Y. D., Wang, S., Wang, P., Chi, D., Liu, H., Kai, D., Lee, C. L. K., Yan, Q., Xu, J., Loh, X. J. & Zhu, Q. (2023). Integration of phase change material and thermal insulation material as a passive strategy for building cooling in the tropics. Construction and Building Materials, 386, 131583. https://doi.org/10.1016/j.conbuildmat.2023.131583
  • Pirasaci, T. & Sunol, A. (2024). Potential of phase change materials (PCM) for building thermal performance enhancement: PCM-composite aggregate application throughout Turkey. Energy, 292, 130589. https://doi.org/10.1016/j.energy.2024.130589
  • Ryms, M., Januszewicz, K., Haustein, E., Kazimierski, P. & Lewandowski, W. M. (2022). Thermal properties of a cement composite containing phase change materials (PCMs) with post-pyrolytic char obtained from spent tyres as a carrier. Energy, 239, 121936. https://doi.org/10.1016/j.energy.2021.121936
  • Salgueiro, T., Samagaio, A., Gonçalves, M., Figueiredo, A., Labrincha, J. & Silva, L. (2021). Incorporation of phase change materials in an expanded clay containing mortar for indoor thermal regulation of buildings. Journal of Energy Storage, 36, 102385. https://doi.org/10.1016/j.est.2021.102385
  • Sarcinella, A., de Aguiar, J. L. B., Jesus, C. & Frigione, M. (2023). Thermal properties of PEG-based form-stable Phase Change Materials (PCMs) incorporated in mortars for energy efficiency of buildings. Journal of Energy Storage, 67, 107545. https://doi.org/10.1016/j.est.2023.107545
  • Sarı, A., Nas, M., Yeşilata, B., Ustaoğlu, A., Erdoğmuş, E., Torlaklı, H., Hekimoğlu, G. & Gencel, O. (2024). A novel cement mortar comprising natural zeolite/dodecyl alcohol shape stable composite phase change material for energy effective buildings. Journal of Energy Storage, 87, 111266. https://doi.org/10.1016/j.est.2024.111266
  • Şimşek, A. (2018). Alanyazın taraması. Ali ŞİMŞEK (Ed.), Sosyal Bilimlerde Araştırma Yöntemleri (s. 52-79) Eskişehir: T.C. Anadolu Üniversitesi Yayınevi.
  • Taj, S. A., Khalid, W., Nazir, H., Khan, A., Sajid, M., Waqas, A., Hussain, A., Ali, M. & Zaki, S. A. (2024). Experimental investigation of eutectic PCM incorporated clay brick for thermal management of building envelope. Journal of Energy Storage, 84, 110838. https://doi.org/10.1016/j.est.2024.110838
  • Tamer, T., Dino, I. G., Baker, D. K. & Akgül, C. M. (2023). Coupling PCM wallboard utilization with night Ventilation: Energy efficiency and overheating risk in office buildings under climate change impact. Energy & Buildings, 298, 113482. https://doi.org/10.1016/j.enbuild.2023.113482
  • Telkes, M. & Raymond, E. (1949). Storing solar heat in chemicals – a report on the Dover house. Heating and Ventilating, 49, 80-86. https://www.osti.gov/biblio/5118227
  • Topçu, İ. B., Bayram, M., Ustaoğlu, A., Hekimoğlu, G., Erdoğmuş, E., Sarı, A., Gencel, O. & Ozbakkaloglu, T. (2024). Innovative cementitious mortar incorporated with sepiolite based shape-stable phase change material for thermal controlling of buildings. Construction and Building Materials, 426, 136124. https://doi.org/10.1016/j.conbuildmat.2024.136124
  • Vargas, V. Z., Claros-Marfil, L. J., Sandoval, G. F. B., Rojas, B. H., Santos, A. G. & Gonzalez, F. J. N. (2024). Experimental assessment of energy storage in microcapsulated paraffin PCM Cement mortars. Case Studies in Construction Materials, 20, e02959. https://doi.org/10.1016/j.cscm.2024.e02959
  • Wang, G., Li, X., Chang, C. & Ju, H. (2024a). Multi-objective passive design and climate effects for office buildings integrating phase change material (PCM) in a cold region of China. Journal of Energy Storage, 82, 110502. https://doi.org/10.1016/j.est.2024.110502
  • Wang, M., Liu, S., Han, J., Bai, R., Gao, W. & Zhou, M. (2024b). A novel capric-stearic acid/expanded perlite-based cementitious mortar for thermal energy storage. Solar Energy, 273, 112501. https://doi.org/10.1016/j.solener.2024.112501
  • Wang, F., Qiao, Z., Zheng, W., Li, Y., Gou, Y., Qi, Y. & Li, H. (2024c). Preparing gypsum-based self-levelling energy storage mortar via fly ash cenospheres/paraffin used for floor radiant heating. Construction and Building Materials, 423, 135865. https://doi.org/10.1016/j.conbuildmat.2024.135865
  • Xiao, Y., Zhang, T., Liu, Z., Fei, F. & Fukuda, H. (2023). Optimizing energy efficiency in HSCW buildings in China through temperature-controlled PCM Trombe wall system. Energy, 278, 128015. https://doi.org/10.1016/j.energy.2023.128015
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Issue
Authors

Fatih Selim Bayraktar 0000-0002-8672-3511

Ramazan Köse 0000-0001-6041-6591

Early Pub Date June 28, 2024
Publication Date June 30, 2024
Submission Date May 1, 2024
Acceptance Date June 14, 2024
Published in Issue Year 2024

Cite

APA Bayraktar, F. S., & Köse, R. (2024). Yapı Malzemelerinde PCM Kullanımının Binaların Isıl Özelliklerine Etkisi. Kirklareli University Journal of Engineering and Science, 10(1), 66-76. https://doi.org/10.34186/klujes.1476480