Research Article
BibTex RIS Cite

ECONOMIC ANALYSIS OF MAGLEV TRAIN TECHNOLOGY A CASE STUDY FOR ANKARA-SIVAS LINE

Year 2021, , 205 - 220, 31.12.2021
https://doi.org/10.34186/klujes.944183

Abstract

Nüfus yoğunluğu hızla kırsal alanlardan şehir merkezlerine kaymaktadır. Şehirlerde nüfus artışı beraberinde ulaşım sorunlarını da beraberinde getiriyor. Konvansiyonel toplu taşıma bu sorunları çözmek için yeterli değil. Bu konuda geliştirilen alternatif ulaşım yöntemlerinden biri de maglev tren taşımacılığıdır. Maglev tren km-yolcu taşıma oranları, bu teknolojinin kişi başına çevresel katkı sağladığını ortaya koymaktadır. Maglev trenlerinin geleneksel trenlere göre çeşitli avantajları vardır. Kılavuz ray ile temas olmadığı için sürtünme yoktur. Diğer trenlere göre daha az gürültülü ve daha hızlıdır. Bu çalışmada, Türkiye'de bir maglev tren hattı Ankara-Sivas uygulaması. Ekonomik analizde uygulanabilen dört farklı versiyon için yapılmıştır. Yapılan analize göre, vagon sayısına göre% 2,1 daha fazla maliyeti olan, ancak alternatif versiyonun iki katı vagon sayısına sahip olan ve istasyon sayısına göre% 0,5 daha fazla maliyetle 4 istasyona sahip olan versiyon 1 uygun bulunmuştur.

References

  • [1] Center for Sustainable Systems. (2019). U.S. Cities Factsheet. Pub. No.CSS09.Michigan. http://css.umich.edu/sites/default/files/US%20Cities_CSS09-06_e2019.pdf
  • [2] Spielmann, M., Haan, P., Scholz, R.W., Environmental rebound effects of high-speed transport technologies: a case study of climate change rebound effects of a future underground maglev train system, Journal of Cleaner Production, Volume 16, Issue 13, 2008, Pages 1388-1398, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2007.08.001.
  • [3] https://www.cambridgeinternational.org/images/156337-june-2012-pre-released-material-2.pdf University of Cambridge International Examinations, PHYSICS, 9792/02, May/June 2012, Accessed 13 December 2020
  • [4] Zarandi, R.N., Hekmati, A., A Review of Suspension and Traction Technologies in Maglev Trains, 2019 International Power System Conference (PSC), Tehran, Iran, 2019, pp. 129-135, doi: 10.1109/PSC49016.2019.9081455.
  • [5] Tan, C., Zhou, D., Chen, G., Sheridan, J., Krajnovic, S., Influences of marshalling length on the flow structure of a maglev train, International Journal of Heat and Fluid Flow, Volume 85, 2020, 108604, ISSN 0142-727X, https://doi.org/10.1016/j.ijheatfluidflow.2020.108604
  • [6] Huang, S., Li, Z., Yang, M., Aerodynamics of high-speed maglev trains passing each other in open air, Journal of Wind Engineering and Industrial Aerodynamics, Volume 188, 2019, Pages 151-160, ISSN 0167-6105, https://doi.org/10.1016/j.jweia.2019.02.025
  • [7] Yang, Q., Yu, P., Li, J., Chi, Z., Wang, L., Modeling and Control of Maglev Train Considering Eddy Current Effect, 2020 39th Chinese Control Conference (CCC), Shenyang, China, 2020, pp. 5554-5558, doi: 10.23919/CCC50068.2020.9188534.
  • [8] Liang, G., Zhao, L., Yang, J., Ma, J. Zhang, Y., Wang, X., Zhao, Y., Study of the Maglev Performance of the Side- Mounted High-Temperature Superconductor Maglev Rotating System, Transactions on Applied Superconductivity, vol. 25, no. 4, pp. 1-6, Aug. 2015, Art no. 3601406, doi:10.1109/TASC.2015.2409193.
  • [9] Xu,Y.L., Wang, Z.L., Li, G.Q., Chen, S., Yang, Y.B., High-speed running maglev trains interacting with elastic transitional viaducts, Engineering Structures, Volume 183, 2019, Pages 562-578, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2019.01.012.
  • [10] Zhang, L., Huang, J., Dynamic interaction analysis of the high-speed maglev vehicle/guideway system based on a field measurement and model updating method, Engineering Structures, Volume 180, 2019, Pages 1-17, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2018.11.031.
  • [11] Hu, Y., Zeng, J., Long, Z., Zhai, M., Eddy Current Effects on the Guiding System of High-Speed Maglev Train, 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019, pp. 1-5, doi: 10.1109/ICEMS.2019.8922563.
  • [12] Zhang J., He N., Chen T., Xue S. (2012) Design and Analysis of Built-In Test for the Absolute Locating Sensor of Maglev Train. In: Zhang T. (eds) Mechanical Engineering and Technology. Advances in Intelligent and Soft Computing, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27329-2_15
  • [13] Yaghoubi, H., Barazi, N., Kahkeshan, K., Zare, A., Ghazanfari,H., Technical Comparison of Maglev and Rail Rapid Transit Systems, The 21st International Conference on Magnetically Levitated Systems and Linear Drives, October 10-13, 2011, Daejeon, Korea
  • [14] Xu, W., Huang, C., Control system of maglev train based on RAMS, 2011 International Conference on Electrical and Control Engineering, Yichang, 2011, pp. 2943-2946, doi:10.1109/ICECENG.2011.6057650
  • [15] https://northeastmaglev.com/environmental-benefits/, Accessed 20 December 2020
  • [16] http://www.smtdc.com/en/ , Accessed 20 December 2020
  • [17] Uno, M., Chuo Shinkansen Project Using Supercunducting Maglev System, Japan Railway& Transport Review, No:68, 2016
  • [18] Park, D.Y., Gieras J.F., Incheon Airport Maglev Line, Przegląd Elektrotechniczny, ISSN 0033-2097, R. 95 NR 6/2019
  • [19] Cummings, M.N., Baldi, B., Buss, W., Chin, H., Hirschfeld, W. W., Shearin, G., California-Nevada Interstate Maglev Project (CNIMP), MAGLEV'2006: The 19th International Conference on Magnetically Levitated Systems and Linear Drives, 13-15 September 2006, Dresden, Germany
  • [20] Vuchic, V.R., Casello,J.M., An Evaluation of Maglev Technology and Its Comparison With High Speed Rail, Transportation Quarterly 56(2), 33-49. January 2002
  • [21] Lee, H.W., Kim, K.C., Lee, J., Review of maglev train technologies, Transactions on Magnetics, vol. 42, no. 7, pp. 1917-1925, July 2006, doi: 10.1109/TMAG.2006.875842.
  • [22] Pandey, N.D., Kumar, M., Tiwari, P., Analysis of Magnetic Levitation and Maglev Trains, IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 12, December 2016 ISSN (Online) 2348 – 7968
  • [23] Ren, Z., Xiao, L., Liu, H., Wang, Q., Research on Control System of Electro-Magnetic Suspension Maglev Train, 2020 IEEE International Conference on Information Technology,Big Data and Artificial Intelligence (ICIBA), Chongqing, 2020, pp. 1085-1089, doi: 10.1109/ICIBA50161.2020.9277002.
  • [24] U. S. Department of Transportation Federal Railroad Administration, Report to Congress: Costs and Benefits of Magnetic Levitation, September 2005
  • [25] https://tr.railturkey.org/2015/11/04/ankara-sivas-yuksek-hizli-tren-hatti/ , Accessed 13 December 2020
  • [26] https://www.tcddtasimacilik.gov.tr/haber/453/ , Accessed 13 December 2020
  • [27] Behbahani, H., Yaghoubi, H., Rezvani, M. A., Development of technical and economical models for widespread application of magnetic levitation system in public transport, International Journal of Civil Engineering, Vol. 10, No. 1, March 2012
  • [28] Plotkin, D., Kim, S., Maglev Guideway Cost and Costruction Schedule Assessment, Journal of Transportation Engineering, 1997, p:195
  • [29] Sawada, K., Outlook of the Superconducting Maglev, The 21st International Conference on Magnetically Levitated Systems and Linear Drives, October 10-13, 2011, Daejeon, Korea
  • [30] U. S. Department of Transportation, Advanced Guideway System (AGS) Feasibility Study, Chapter 4 Cost Estimation, August 2014
  • [31] U. S. Department of Transportation, Urban Maglev Technology Development Program Colorado Maglev Project Executıve Summary, JUNE 2004
  • [32] Turkish State Railways General Directorate Of Business, Railway Sector Report 2019, Ankara, May 2020
  • [33] HNTB, SANDAG Maglev Study Phase 1 Final Report, March 17, 2006

MAGLEV TREN TEKNOLOJİSİNİN EKONOMİK ANALİZİ: ANKARA-SİVAS HATTI İÇİN BİR DURUM ÇALIŞMASI

Year 2021, , 205 - 220, 31.12.2021
https://doi.org/10.34186/klujes.944183

Abstract

Population density has been rapidly shifting from rural areas to city centers. The increase of population in cities brings transportation problems with it. Conventional public transportation is not enough to solve these problems. One of the alternative transportation methods developed for this matter is maglev train transportation. Maglev train km-passenger transport rates reveal that this technology provides per capita environmental contribution. Maglev trains have various advantages over conventional trains. Since there is no contact with the guide track, there is no friction. It is less noisy and faster than other trains. In this study, the application for a maglev train line Ankara-Sivas in Turkey. That can be applied in the economic analysis was conducted for four different versions. According to the analysis, version 1, which has 2.1% more cost considering the number of wagons, but which has twice the number of wagons of the alternative version and has 4 stations with 0.5% more cost considering the number of stations, was found suitable.

References

  • [1] Center for Sustainable Systems. (2019). U.S. Cities Factsheet. Pub. No.CSS09.Michigan. http://css.umich.edu/sites/default/files/US%20Cities_CSS09-06_e2019.pdf
  • [2] Spielmann, M., Haan, P., Scholz, R.W., Environmental rebound effects of high-speed transport technologies: a case study of climate change rebound effects of a future underground maglev train system, Journal of Cleaner Production, Volume 16, Issue 13, 2008, Pages 1388-1398, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2007.08.001.
  • [3] https://www.cambridgeinternational.org/images/156337-june-2012-pre-released-material-2.pdf University of Cambridge International Examinations, PHYSICS, 9792/02, May/June 2012, Accessed 13 December 2020
  • [4] Zarandi, R.N., Hekmati, A., A Review of Suspension and Traction Technologies in Maglev Trains, 2019 International Power System Conference (PSC), Tehran, Iran, 2019, pp. 129-135, doi: 10.1109/PSC49016.2019.9081455.
  • [5] Tan, C., Zhou, D., Chen, G., Sheridan, J., Krajnovic, S., Influences of marshalling length on the flow structure of a maglev train, International Journal of Heat and Fluid Flow, Volume 85, 2020, 108604, ISSN 0142-727X, https://doi.org/10.1016/j.ijheatfluidflow.2020.108604
  • [6] Huang, S., Li, Z., Yang, M., Aerodynamics of high-speed maglev trains passing each other in open air, Journal of Wind Engineering and Industrial Aerodynamics, Volume 188, 2019, Pages 151-160, ISSN 0167-6105, https://doi.org/10.1016/j.jweia.2019.02.025
  • [7] Yang, Q., Yu, P., Li, J., Chi, Z., Wang, L., Modeling and Control of Maglev Train Considering Eddy Current Effect, 2020 39th Chinese Control Conference (CCC), Shenyang, China, 2020, pp. 5554-5558, doi: 10.23919/CCC50068.2020.9188534.
  • [8] Liang, G., Zhao, L., Yang, J., Ma, J. Zhang, Y., Wang, X., Zhao, Y., Study of the Maglev Performance of the Side- Mounted High-Temperature Superconductor Maglev Rotating System, Transactions on Applied Superconductivity, vol. 25, no. 4, pp. 1-6, Aug. 2015, Art no. 3601406, doi:10.1109/TASC.2015.2409193.
  • [9] Xu,Y.L., Wang, Z.L., Li, G.Q., Chen, S., Yang, Y.B., High-speed running maglev trains interacting with elastic transitional viaducts, Engineering Structures, Volume 183, 2019, Pages 562-578, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2019.01.012.
  • [10] Zhang, L., Huang, J., Dynamic interaction analysis of the high-speed maglev vehicle/guideway system based on a field measurement and model updating method, Engineering Structures, Volume 180, 2019, Pages 1-17, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2018.11.031.
  • [11] Hu, Y., Zeng, J., Long, Z., Zhai, M., Eddy Current Effects on the Guiding System of High-Speed Maglev Train, 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019, pp. 1-5, doi: 10.1109/ICEMS.2019.8922563.
  • [12] Zhang J., He N., Chen T., Xue S. (2012) Design and Analysis of Built-In Test for the Absolute Locating Sensor of Maglev Train. In: Zhang T. (eds) Mechanical Engineering and Technology. Advances in Intelligent and Soft Computing, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27329-2_15
  • [13] Yaghoubi, H., Barazi, N., Kahkeshan, K., Zare, A., Ghazanfari,H., Technical Comparison of Maglev and Rail Rapid Transit Systems, The 21st International Conference on Magnetically Levitated Systems and Linear Drives, October 10-13, 2011, Daejeon, Korea
  • [14] Xu, W., Huang, C., Control system of maglev train based on RAMS, 2011 International Conference on Electrical and Control Engineering, Yichang, 2011, pp. 2943-2946, doi:10.1109/ICECENG.2011.6057650
  • [15] https://northeastmaglev.com/environmental-benefits/, Accessed 20 December 2020
  • [16] http://www.smtdc.com/en/ , Accessed 20 December 2020
  • [17] Uno, M., Chuo Shinkansen Project Using Supercunducting Maglev System, Japan Railway& Transport Review, No:68, 2016
  • [18] Park, D.Y., Gieras J.F., Incheon Airport Maglev Line, Przegląd Elektrotechniczny, ISSN 0033-2097, R. 95 NR 6/2019
  • [19] Cummings, M.N., Baldi, B., Buss, W., Chin, H., Hirschfeld, W. W., Shearin, G., California-Nevada Interstate Maglev Project (CNIMP), MAGLEV'2006: The 19th International Conference on Magnetically Levitated Systems and Linear Drives, 13-15 September 2006, Dresden, Germany
  • [20] Vuchic, V.R., Casello,J.M., An Evaluation of Maglev Technology and Its Comparison With High Speed Rail, Transportation Quarterly 56(2), 33-49. January 2002
  • [21] Lee, H.W., Kim, K.C., Lee, J., Review of maglev train technologies, Transactions on Magnetics, vol. 42, no. 7, pp. 1917-1925, July 2006, doi: 10.1109/TMAG.2006.875842.
  • [22] Pandey, N.D., Kumar, M., Tiwari, P., Analysis of Magnetic Levitation and Maglev Trains, IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 12, December 2016 ISSN (Online) 2348 – 7968
  • [23] Ren, Z., Xiao, L., Liu, H., Wang, Q., Research on Control System of Electro-Magnetic Suspension Maglev Train, 2020 IEEE International Conference on Information Technology,Big Data and Artificial Intelligence (ICIBA), Chongqing, 2020, pp. 1085-1089, doi: 10.1109/ICIBA50161.2020.9277002.
  • [24] U. S. Department of Transportation Federal Railroad Administration, Report to Congress: Costs and Benefits of Magnetic Levitation, September 2005
  • [25] https://tr.railturkey.org/2015/11/04/ankara-sivas-yuksek-hizli-tren-hatti/ , Accessed 13 December 2020
  • [26] https://www.tcddtasimacilik.gov.tr/haber/453/ , Accessed 13 December 2020
  • [27] Behbahani, H., Yaghoubi, H., Rezvani, M. A., Development of technical and economical models for widespread application of magnetic levitation system in public transport, International Journal of Civil Engineering, Vol. 10, No. 1, March 2012
  • [28] Plotkin, D., Kim, S., Maglev Guideway Cost and Costruction Schedule Assessment, Journal of Transportation Engineering, 1997, p:195
  • [29] Sawada, K., Outlook of the Superconducting Maglev, The 21st International Conference on Magnetically Levitated Systems and Linear Drives, October 10-13, 2011, Daejeon, Korea
  • [30] U. S. Department of Transportation, Advanced Guideway System (AGS) Feasibility Study, Chapter 4 Cost Estimation, August 2014
  • [31] U. S. Department of Transportation, Urban Maglev Technology Development Program Colorado Maglev Project Executıve Summary, JUNE 2004
  • [32] Turkish State Railways General Directorate Of Business, Railway Sector Report 2019, Ankara, May 2020
  • [33] HNTB, SANDAG Maglev Study Phase 1 Final Report, March 17, 2006
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Issue
Authors

Ezgi Arslan Tuncar 0000-0002-3190-5705

İsmail Kıyak 0000-0002-5061-6378

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Arslan Tuncar, E., & Kıyak, İ. (2021). ECONOMIC ANALYSIS OF MAGLEV TRAIN TECHNOLOGY A CASE STUDY FOR ANKARA-SIVAS LINE. Kirklareli University Journal of Engineering and Science, 7(2), 205-220. https://doi.org/10.34186/klujes.944183