Loading [a11y]/accessibility-menu.js
ON THE SOME PARTICULAR SETS
Year 2016 ,
Volume: 2 Issue: 2, 99 - 108, 25.12.2016
Özen Özer
Abstract
For 𝑡 an integer, a 𝑃𝑡 set is defined as a set of 𝑚 positive integers with the property that the product of its any two distinct element increased by 𝑡 is a perfect square integer.
In this study, the certain special 𝑃−5, 𝑃+5, 𝑃−7 and 𝑃+7 sets with size three are considered. It is demonstrated that they cannot be extended to 𝑃−5, 𝑃+5, 𝑃−7 and 𝑃+7 with size four. Also, some properties of them are proved.
References
[1] Anglin W.S., The queen of mathematics-An introduction to number theory, Kluwer Academic Publishers, Dordrecht, 1995.
[2] Baker A., Davenport H., 1969, The equations 3x2−2=y2 and 8x2−7=z2 , Quarterly Journal of Mathematics, Oxford(2), 20, 129-137, 1969.
[3] Brown LE., Sets in Which xy+k is Always a Square, Math. Comp, 45, 613-620, 1985.
[4] Dickson LE., History of Theory of Numbers and Diophantine Analysis, Vol 2, Dove Publications, New York, 2005.
[5] Filipin L A., Fujita Y., M. Mignotte, The non-extendibility of some parametric families of D(-1)-triples, Q. J. Math. 63, 605-621, 2012.
[6] Gopalan M. A., Vidhyalakshmi S., Mallika S., Some special non-extendable Diophantine triples, Sch. J. Eng. Tech. 2, 159-160, 2014.
[7] Grinstead C.M., On a Method of Solving a Class of Diophantine Equations . Math. Comp.,32, 936-940, 1978.
[8] Kanagasabapathy P., Ponnudurai T., The Simultaneous Diophantine Equations y2−3x2=−2 and z2−8x2=−7 , Quarterly Journal of Mathernatics, Oxford Ser (3), 26, 275-278, 1975.
[9] Katayama S., Several methods for solving simultaneous Fermat-Pell equations, J. Math. Tokushima Univ., 33 , 1–14, 1999.
[10] Kaygısız K., Şenay H., Contructions of Some New Nonextandable Pk Sets, International Mathematical Forum, 2, no. 58, 2869 – 2874, 2007.
[11] Masser D.W., Rickert J.H., Simultaneous Pell Equations ,Number Theory , 61, 52-66, 1996.
[12] Mohanty P., Ramasamy A.M.S., The Simultaneous Diophantine Equations 5y2−20= x2,2y2+1= z2,.J.Number Theory.18,365-359, 1984.
[13] Mordell LJ., Diophantine Equations, Academic Press, New York, 1970.
[14] Mollin R.A., Fundamental Number theory wiyh Applications, CRC Press, 2008.
[15] Tzanakis N., Effective solution of two simultaneous Pell equations by the elliptic logarithm method, Acta Arithm., 103, 119–135, 2002.
Year 2016 ,
Volume: 2 Issue: 2, 99 - 108, 25.12.2016
Özen Özer
References
[1] Anglin W.S., The queen of mathematics-An introduction to number theory, Kluwer Academic Publishers, Dordrecht, 1995.
[2] Baker A., Davenport H., 1969, The equations 3x2−2=y2 and 8x2−7=z2 , Quarterly Journal of Mathematics, Oxford(2), 20, 129-137, 1969.
[3] Brown LE., Sets in Which xy+k is Always a Square, Math. Comp, 45, 613-620, 1985.
[4] Dickson LE., History of Theory of Numbers and Diophantine Analysis, Vol 2, Dove Publications, New York, 2005.
[5] Filipin L A., Fujita Y., M. Mignotte, The non-extendibility of some parametric families of D(-1)-triples, Q. J. Math. 63, 605-621, 2012.
[6] Gopalan M. A., Vidhyalakshmi S., Mallika S., Some special non-extendable Diophantine triples, Sch. J. Eng. Tech. 2, 159-160, 2014.
[7] Grinstead C.M., On a Method of Solving a Class of Diophantine Equations . Math. Comp.,32, 936-940, 1978.
[8] Kanagasabapathy P., Ponnudurai T., The Simultaneous Diophantine Equations y2−3x2=−2 and z2−8x2=−7 , Quarterly Journal of Mathernatics, Oxford Ser (3), 26, 275-278, 1975.
[9] Katayama S., Several methods for solving simultaneous Fermat-Pell equations, J. Math. Tokushima Univ., 33 , 1–14, 1999.
[10] Kaygısız K., Şenay H., Contructions of Some New Nonextandable Pk Sets, International Mathematical Forum, 2, no. 58, 2869 – 2874, 2007.
[11] Masser D.W., Rickert J.H., Simultaneous Pell Equations ,Number Theory , 61, 52-66, 1996.
[12] Mohanty P., Ramasamy A.M.S., The Simultaneous Diophantine Equations 5y2−20= x2,2y2+1= z2,.J.Number Theory.18,365-359, 1984.
[13] Mordell LJ., Diophantine Equations, Academic Press, New York, 1970.
[14] Mollin R.A., Fundamental Number theory wiyh Applications, CRC Press, 2008.
[15] Tzanakis N., Effective solution of two simultaneous Pell equations by the elliptic logarithm method, Acta Arithm., 103, 119–135, 2002.
Show All References
Show Less References
There are 15 citations in total.
Cite
APA
Özer, Ö. (2016). ON THE SOME PARTICULAR SETS. Kirklareli University Journal of Engineering and Science, 2(2), 99-108.