Research Article
BibTex RIS Cite

KINETIC CHARACTERIZATION OF GAG:CE PHOSPHOR

Year 2017, Volume: 3 Issue: 2, 95 - 106, 30.12.2017

Abstract



Thermoluminescence (TL) kinetic characterization of cerium (Ce3+)
doped gadolinium aluminum garnet (GAG) prepared by
wet chemical
synthesis method are
presented in this study.
Thermoluminescence
glow curve of GAG phosphor after UV irradiated has two peaks at about 350 and 501
K with a heating rate of 2 Ks-1.
Thermoluminescence kinetic parameters such as
order of kinetics, frequency factor and activation energy associated with the main
glow peak of the GAG:Ce phosphor have been calculated using various heating
rates (VHR) computerized glow curve deconvulation (CGCD) and  peak shape (PS) methods in this study. The
activation energies obtained by VHR, PS and CGCD methods are calculated to be
1.24, 1.11 and 1.14 eV, respectively. The frequency factors attained by these methods
were found as 3.41x1011, 1.80x1010 and 2.63x1010
s-1, respectively. Results acquired using all methods are discussed and
compared.




References

  • Surresh, G., Seenivasan, G., Krishnaiah, M.V., Murti, P.S., Investigation of the thermal conductivity of selected compounds of gadolinium and lanthanum, Journal of Nuclear Materials, 249, 259-261, 1997.
  • Cizauskaite, S., Reichlova, V., Nenartaviciene, G., Beganskiene, A., Pinkas, J., Kareiva, A., Sol–gel preparation and characterization of gadolinium aluminate, Materials Chemistry and Physics, 102, 105-110, 2007.
  • Chiang, C.C., Tsai, M.S. and Hona, M.H., Preparation of Cerium-Activated GAG Phosphor Powders Influence of Co-doping on Crystallinity and Luminescent Properties, Journal of The Electrochemical Society, 154, 10, J326-J329, 2007.
  • Marius, M., Popovici, E.J., Barbu-Tudoran, L., Indrea, E., Mesaros, A., Cerium-doped yttrium aluminate based phosphors prepared by wet-chemical synthesis route: Modulation of the luminescence color by changing the host-lattice composition, Ceramics International, 40, 6233–6239, 2014.
  • Matos, M.G., Calefi, P.S., Ciuffi, K.J., Nassar, E.J., Synthesis and luminescent properties of gadolinium aluminates phosphors, Inorganica Chimica Acta, 375, 63–69, 2011.
  • Dotsenko,V.P., Berezovskaya, I.V., Voloshinovskii, A.S., Zadneprovski, B.I., Efryushina, N.P., Luminescence properties and electronic structure of Ce3+-doped gadolinium aluminum garnet, Materials Research Bulletin, 64, 151–155, 2015.
  • Popovici, E.J., Morar, M., Bica, E., Perhaita, I., Cadis, A.I., Indrea, E., Barbu-Tudoran, L., Synthesis and characterization of cerium doped yttrium-gadolinium aluminate phosphors by wet-chemical synthesis route, Journal of Optoelectronics and Advanced Materials, 13, 617–624, 2011.
  • Diffey, B.L., Sources and measurement of ultraviolet radiation, Methods, 28, 4–13, 2002.
  • Ultraviolet Radiation Guide, Technical Manual NEHC-TM92-5, Bureau of Medicine and Surgery, Navy Environmental Health Center, April 1992.
  • Uysal Satilmis, S., Ege A., Ayvacikli, M., Khatab, A., Ekdal, E., Popovici, E.J., Henini, M., Can, N., Luminescence characterization of cerium doped yttrium gadolinium aluminate phosphors, Optical Materials, 34, 1921–1925, 2012.
  • Bindi, R., Lapraz, D., Iacconi, P., Boutayeb, S., Theoretical analysis of the simultaneous detection method of thermally stimulated conductivity (TSC) and luminescence (TSL); application to an alpha -Al2O3 monocrystal, Journal of Physics D: Applied Physics, 27, 2395-2400, 1994.
  • Ege (Türkler), A., Ekdal, E., Karali, T., Can, N. and Prokic, M., Effect of heating rate on kinetic parameters of β-irradiated Li2B4O7: Cu, Ag, P in TSL measurements, Measurement Science and Technology, 18, 889-892, 2007.
  • Rasheedy, M.S., Method of Hoogenstraaten as a tool for obtaining the trap parameters of general-order thermoluminescence glow peaks, Radiation Effects & Defects in Solids, 160, 383–390, 2005.
  • Kitis, G. and Tuyn, J.W.N., Correction for temperature lag and thermal gradient effects arising during thermoluminescence readout, Radiation Protection Dosimetry, 84, 371–374, 1999.
  • Gotlib, V.I., Kantorovich, L.N., Grebenshicov, V.L., Bichev, V.R. and Nemiro, E.A., The study of thermoluminescence using the contact method of sample heating, Journal of Physics D: Applied Physics, 17, 2097–2114, 1984.
  • Betts, D.S., Couturier, L., Khayrat, A.H., Luff, B.J. and Townsend, P.D., Temperature distribution in thermoluminescence experiments I: experimental results, Journal of Physics D: Applied Physics, 26, 843-848, 1993.
  • Betts, D.S. and Townsend, P.D., Temperature Distribution in Thermoluminescence Experiments II: Some Calculational Models, Journal of Physics D: Applied Physics, 26, 849–857, 1993.
  • Piters, T.M. and Bos, A.J.J., Effects on Non-Ideal Heat Transfer on the Glow Curve in Thermoluminescence Experiments, Journal of Physics D: Applied Physics, 27, 1747–1756, 1994.
  • Ege, A., Wang, Y., Townsend, P.D., Systematic errors in thermoluminescence, Nuclear Instruments and Methods in Physics Research A, 576, 411–416, 2007.
  • Kitis, G. and Tuyn, J.W.N., Correctıon for temperature lag and thermal gradient effects arising during thermoluminescence readout, Radiation Protection Dosimetry, 84 371–374, 1999.
  • Kitis, G. and Tuyn, J.W.N., A simple method to correct for the temperature lag in TL glow-curve measurements, Journal of Physics D: Applied Physics, 31, 2065–2073, 1998.
  • Chen, R., Glow Curves and General Order Kinetics, Journal of the Electrochemical Society, 166, (9), 1254-1257, 1969.
  • Türkler L., Investigation of Kinetic Parameters of Different Termoluminescent Materials, MSc. Thesis, Manisa Celal Bayar University, Graduate School of Natural and Applied Sciences, 2010.
  • Tamrakar, R.K., Kanchan U. and Manjulata S., Model to explain the concentration quenching on thermoluminescence behaviour of Eu3+ doped Gd2O3 phosphor under UV irradiation, Journal of Alloys and Compounds, 699, 898-906, 2017.

KINETIC CHARACTERIZATION OF GAGCE PHOSPHOR

Year 2017, Volume: 3 Issue: 2, 95 - 106, 30.12.2017

Abstract



Bu
çalışmada, ıslak kimyasal sentez metodu ile hazırlanmış seryum (Ce+3)
katkılı gadolinyum alüminyum garnetin termolüminesans (TL) kinetik
karakterizasyonu sunulmuştur. UV ile ışınlanmasının ardından GAG fosforunun, termolüminesans
ışıma eğrisi
2 Ks-1
ısıtma hızı ile yaklaşık olarak 350 ve 501 K de iki pike sahiptir. Çalışmada
GAG:Ce fosforunun ana ışıma piki (501 K) ile ilişkili kinetik derece, frekans
faktörü ve aktivasyon enerjisi gibi termolüminesans kinetik parametreleri,
çeşitli ısıtma hızları (VHR), bilgisayarlı ışıma eğrisi dekonvulasyonu (CGCD)
ve pik şekli (PS) metotları ile hesaplanmıştır.
VHR, PS ve CGCD metotları ile elde edilen aktivasyon enerjileri sırasıyla 1,24,
1,11 ve 1, 14 eV olarak hesaplanmıştır. Bu metotlarla ulaşılan frekans
faktörleri 3,41x1011, 1,80x1010 ve 2,63x1010 s-1
olarak bulunmuştur. Tüm metotlardan elde edilen sonuçlar kıyaslanmış ve
tartışılmıştır.




References

  • Surresh, G., Seenivasan, G., Krishnaiah, M.V., Murti, P.S., Investigation of the thermal conductivity of selected compounds of gadolinium and lanthanum, Journal of Nuclear Materials, 249, 259-261, 1997.
  • Cizauskaite, S., Reichlova, V., Nenartaviciene, G., Beganskiene, A., Pinkas, J., Kareiva, A., Sol–gel preparation and characterization of gadolinium aluminate, Materials Chemistry and Physics, 102, 105-110, 2007.
  • Chiang, C.C., Tsai, M.S. and Hona, M.H., Preparation of Cerium-Activated GAG Phosphor Powders Influence of Co-doping on Crystallinity and Luminescent Properties, Journal of The Electrochemical Society, 154, 10, J326-J329, 2007.
  • Marius, M., Popovici, E.J., Barbu-Tudoran, L., Indrea, E., Mesaros, A., Cerium-doped yttrium aluminate based phosphors prepared by wet-chemical synthesis route: Modulation of the luminescence color by changing the host-lattice composition, Ceramics International, 40, 6233–6239, 2014.
  • Matos, M.G., Calefi, P.S., Ciuffi, K.J., Nassar, E.J., Synthesis and luminescent properties of gadolinium aluminates phosphors, Inorganica Chimica Acta, 375, 63–69, 2011.
  • Dotsenko,V.P., Berezovskaya, I.V., Voloshinovskii, A.S., Zadneprovski, B.I., Efryushina, N.P., Luminescence properties and electronic structure of Ce3+-doped gadolinium aluminum garnet, Materials Research Bulletin, 64, 151–155, 2015.
  • Popovici, E.J., Morar, M., Bica, E., Perhaita, I., Cadis, A.I., Indrea, E., Barbu-Tudoran, L., Synthesis and characterization of cerium doped yttrium-gadolinium aluminate phosphors by wet-chemical synthesis route, Journal of Optoelectronics and Advanced Materials, 13, 617–624, 2011.
  • Diffey, B.L., Sources and measurement of ultraviolet radiation, Methods, 28, 4–13, 2002.
  • Ultraviolet Radiation Guide, Technical Manual NEHC-TM92-5, Bureau of Medicine and Surgery, Navy Environmental Health Center, April 1992.
  • Uysal Satilmis, S., Ege A., Ayvacikli, M., Khatab, A., Ekdal, E., Popovici, E.J., Henini, M., Can, N., Luminescence characterization of cerium doped yttrium gadolinium aluminate phosphors, Optical Materials, 34, 1921–1925, 2012.
  • Bindi, R., Lapraz, D., Iacconi, P., Boutayeb, S., Theoretical analysis of the simultaneous detection method of thermally stimulated conductivity (TSC) and luminescence (TSL); application to an alpha -Al2O3 monocrystal, Journal of Physics D: Applied Physics, 27, 2395-2400, 1994.
  • Ege (Türkler), A., Ekdal, E., Karali, T., Can, N. and Prokic, M., Effect of heating rate on kinetic parameters of β-irradiated Li2B4O7: Cu, Ag, P in TSL measurements, Measurement Science and Technology, 18, 889-892, 2007.
  • Rasheedy, M.S., Method of Hoogenstraaten as a tool for obtaining the trap parameters of general-order thermoluminescence glow peaks, Radiation Effects & Defects in Solids, 160, 383–390, 2005.
  • Kitis, G. and Tuyn, J.W.N., Correction for temperature lag and thermal gradient effects arising during thermoluminescence readout, Radiation Protection Dosimetry, 84, 371–374, 1999.
  • Gotlib, V.I., Kantorovich, L.N., Grebenshicov, V.L., Bichev, V.R. and Nemiro, E.A., The study of thermoluminescence using the contact method of sample heating, Journal of Physics D: Applied Physics, 17, 2097–2114, 1984.
  • Betts, D.S., Couturier, L., Khayrat, A.H., Luff, B.J. and Townsend, P.D., Temperature distribution in thermoluminescence experiments I: experimental results, Journal of Physics D: Applied Physics, 26, 843-848, 1993.
  • Betts, D.S. and Townsend, P.D., Temperature Distribution in Thermoluminescence Experiments II: Some Calculational Models, Journal of Physics D: Applied Physics, 26, 849–857, 1993.
  • Piters, T.M. and Bos, A.J.J., Effects on Non-Ideal Heat Transfer on the Glow Curve in Thermoluminescence Experiments, Journal of Physics D: Applied Physics, 27, 1747–1756, 1994.
  • Ege, A., Wang, Y., Townsend, P.D., Systematic errors in thermoluminescence, Nuclear Instruments and Methods in Physics Research A, 576, 411–416, 2007.
  • Kitis, G. and Tuyn, J.W.N., Correctıon for temperature lag and thermal gradient effects arising during thermoluminescence readout, Radiation Protection Dosimetry, 84 371–374, 1999.
  • Kitis, G. and Tuyn, J.W.N., A simple method to correct for the temperature lag in TL glow-curve measurements, Journal of Physics D: Applied Physics, 31, 2065–2073, 1998.
  • Chen, R., Glow Curves and General Order Kinetics, Journal of the Electrochemical Society, 166, (9), 1254-1257, 1969.
  • Türkler L., Investigation of Kinetic Parameters of Different Termoluminescent Materials, MSc. Thesis, Manisa Celal Bayar University, Graduate School of Natural and Applied Sciences, 2010.
  • Tamrakar, R.K., Kanchan U. and Manjulata S., Model to explain the concentration quenching on thermoluminescence behaviour of Eu3+ doped Gd2O3 phosphor under UV irradiation, Journal of Alloys and Compounds, 699, 898-906, 2017.
There are 24 citations in total.

Details

Journal Section Issue
Authors

Arzu Ege

Sibel Uysal Satılmış This is me

Levent Türkler This is me

Zekai Tek

Elisabeth Popovıcı This is me

Publication Date December 30, 2017
Published in Issue Year 2017 Volume: 3 Issue: 2

Cite

APA Ege, A., Uysal Satılmış, S., Türkler, L., Tek, Z., et al. (2017). KINETIC CHARACTERIZATION OF GAGCE PHOSPHOR. Kırklareli Üniversitesi Mühendislik Ve Fen Bilimleri Dergisi, 3(2), 95-106.