Research Article
BibTex RIS Cite

MECHANICAL PROPERTIES OF FLY ASH AND BLAST FURNACE SLAG BASED ALKALI ACTIVATED CONCRETE

Year 2017, Volume: 3 Issue: 2, 123 - 131, 30.12.2017

Abstract

Cement is one of the commonly used materials in construction
projects. In manufacture of Portland cement, clinker, which is the essential
component of cement, is ground into smaller particles.  During the formation of clinker, limestone
(CaCO3) is converted to lime (CaO) and carbon dioxide is emitted as
a by-product of this chemical reaction.  Cement
production is an environmentally hazardous process due to high carbon dioxide
emission during clinker production and fossil-fuel consumption in production. Alternative
construction materials which are more energy efficient and environmentally
friendly can be preferred for sustainability. In order to use alternative
materials and production methods, mechanical and physical properties of these
materials should be examined thoroughly. In concrete production, strength,
durability and workability should be in proper limits as well as considering economical
factors. In this study, geopolymeric materials were used as an alternative to
conventional concrete, and alkali activated concrete was produced. In this
process, no cement was used. Pozzolanic materials such as fly ash and blast
furnace slag were activated with alkaline liquids and gained binding
property.  In production of geopolymer
concrete, pozzolanic materials, aggregates and alkaline activators were used.
Mechanical properties of fly ash and blast furnace slag based geopolymer
concrete were investigated. Compressive strength of the cubic concrete
specimens at the ages of 7 and 28 days was determined and the effect of ambient
conditions on geopolymer concrete was examined. As a result, it was found that
the increase in the amount of blast furnace slag resulted in higher compressive
strength values.

References

  • [1] Davidovits J. (2008). Geopolymer Chemistry and Applications, Saint Quantin, France.
  • [2] Mehta P.K. (2000). Reflections on Recent Advancements in Concrete Technology, Second International Symposium on Cement and Concrete Technology in 2000s, September 6-10, 1, Istanbul, pp. 43-57.
  • [3] Xu H. and Van Deventer J.S.J. (2002). Geopolymerisation of Multiple Minerals, Minerals Engineering, 15 (12), 1131-39.
  • [4] Palomo A., Grutzeck M.W., Blanco M.T. (1999). Alkali-activated fly ashes, a cement for the future, Cement and Concrete Research, 29 (8), 1323-29.
  • [5] Xu H., Van Deventer J.S.J. (2000). The Geopolymerisation of Alumino-Silicate Minerals, International Journal of Mineral Processing, 59 (3), 247-66.
  • [6] Van Jaarsveld J.G.S., Van Deventer J.S.J., Lukey G.C. (2002). The Effect of Composition and Temperature on the Properties of Fly Ash and Kaolinite-based Geopolymers, Chemical Engineering Journal, 89 (1-3), 63-73.
  • [7] Swanepoel J.C., Strydom C.A. (2002). Utilisation of fly ash in a geopolymeric material, Applied Geochemistry, 17 (8), 1143-48.
  • [8] Davidovits J. (2008). They Built the Pyramids, published by Institute Geopolymer, Saint Quentin, France.
  • [9] Sullivan A., Hill R.G. (2001). Inexpensive glass polialkenoate cement based on waste gasifier slag, Proceedings of the European Union Thematic Progress Workshop, Morella.
  • [10] Silverstrim T., Rotsami H., Larralde J.C., Samadi M.H. (1997). Fly ash cementitious material and method of making a product, US Patent 5, 601, 643, USA.
  • [11] Duxson P., Fernandez J.A., Provis J.L., Lukey G.C., Palomo A., Van Deventer J.S.J. (2003). Geopolymer technology: the current state of the art, Journal of Materials Science, 42, 2917-2933.

MECHANICAL PROPERTIES OF FLY ASH AND BLAST FURNACE SLAG BASED ALKALI ACTIVATED CONCRETE

Year 2017, Volume: 3 Issue: 2, 123 - 131, 30.12.2017

Abstract

Çimento, inşaat projelerinde en çok kullanılan yapı malzemelerinden
biridir. Portland çimentosunun üretiminde, çimentonun temel bileşenlerinden
biri olan klinker öğütülerek daha ince parçacıklar haline getirilir. Klinker
oluşumu esnasında kireçtaşı (CaCO3), kirece (CaO) dönüştürülür ve bu
kimyasal reaksiyonun yan ürünü olarak karbondioksit açığa çıkar.
Klinker üretimi sırasında açığa çıkan
karbondioksitin yanı sıra üretim aşamasında kullanılan fosil yakıtların
tüketimiyle de yüksek miktarda karbondioksit salımı gerçekleştiğinden, çimento
üretimi çevreye zarar veren bir süreçtir.
Sürdürülebilirlik açısından bakıldığında, enerji verimliliği daha fazla
ve çevreye dost alternatif yapı malzemeleri tercih edilebilir. Alternatif
malzemelerin ve üretim yöntemlerinin kullanılabilmesi için, bu malzemelerin
mekanik ve fiziksel özellikleri kapsamlı olarak incelenmelidir. Beton
üretiminde dayanım, dayanıklılık ve işlenebilirlik özelliklerinin uygun
sınırlarda olması gerekirken ekonomik faktörler de göz önünde
bulundurulmalıdır. Bu çalışmada, geleneksel beton üretimine alternatif olarak
geopolimer malzemeler kullanılmış ve alkali ile aktive edilmiş beton üretimi
gerçekleştirilmiştir. Bu üretim sırasında çimento kullanılmamıştır. Uçucu kül
ve yüksek fırın cürufu gibi puzolanik malzemeler, alkaliler ile aktive edilerek
bu malzemelere bağlayıcı özellik kazandırılmıştır. Geopolimer beton üretimi
sırasında, puzolanik malzemeler, agregalar ve alkali aktifleştiriciler
kullanılmıştır. Üretilen uçucu kül ve yüksek fırın cürufu esaslı geopolimer
betonların mekanik özellikleri incelenmiştir. Küp şeklinde dökülmüş beton
numunelerin 7 ve 28 günlük basınç dayanımları belirlenmiş ve ortam koşullarının
geopolimer beton üzerindeki etkisi gözlenmiştir. Çalışma sonucunda, yüksek
fırın cürufu miktarındaki artışın beton basınç dayanımını arttırdığı
görülmüştür.

References

  • [1] Davidovits J. (2008). Geopolymer Chemistry and Applications, Saint Quantin, France.
  • [2] Mehta P.K. (2000). Reflections on Recent Advancements in Concrete Technology, Second International Symposium on Cement and Concrete Technology in 2000s, September 6-10, 1, Istanbul, pp. 43-57.
  • [3] Xu H. and Van Deventer J.S.J. (2002). Geopolymerisation of Multiple Minerals, Minerals Engineering, 15 (12), 1131-39.
  • [4] Palomo A., Grutzeck M.W., Blanco M.T. (1999). Alkali-activated fly ashes, a cement for the future, Cement and Concrete Research, 29 (8), 1323-29.
  • [5] Xu H., Van Deventer J.S.J. (2000). The Geopolymerisation of Alumino-Silicate Minerals, International Journal of Mineral Processing, 59 (3), 247-66.
  • [6] Van Jaarsveld J.G.S., Van Deventer J.S.J., Lukey G.C. (2002). The Effect of Composition and Temperature on the Properties of Fly Ash and Kaolinite-based Geopolymers, Chemical Engineering Journal, 89 (1-3), 63-73.
  • [7] Swanepoel J.C., Strydom C.A. (2002). Utilisation of fly ash in a geopolymeric material, Applied Geochemistry, 17 (8), 1143-48.
  • [8] Davidovits J. (2008). They Built the Pyramids, published by Institute Geopolymer, Saint Quentin, France.
  • [9] Sullivan A., Hill R.G. (2001). Inexpensive glass polialkenoate cement based on waste gasifier slag, Proceedings of the European Union Thematic Progress Workshop, Morella.
  • [10] Silverstrim T., Rotsami H., Larralde J.C., Samadi M.H. (1997). Fly ash cementitious material and method of making a product, US Patent 5, 601, 643, USA.
  • [11] Duxson P., Fernandez J.A., Provis J.L., Lukey G.C., Palomo A., Van Deventer J.S.J. (2003). Geopolymer technology: the current state of the art, Journal of Materials Science, 42, 2917-2933.
There are 11 citations in total.

Details

Journal Section Issue
Authors

Saadet Gökçe Gök

Kadir Kılınç

Publication Date December 30, 2017
Published in Issue Year 2017 Volume: 3 Issue: 2

Cite

APA Gök, S. G., & Kılınç, K. (2017). MECHANICAL PROPERTIES OF FLY ASH AND BLAST FURNACE SLAG BASED ALKALI ACTIVATED CONCRETE. Kirklareli University Journal of Engineering and Science, 3(2), 123-131.