Research Article
BibTex RIS Cite

İstanbul Doğu Yakası Magmatik Kayaçlarının Ayrışması ve Ayrışmanın Jeolojik, Petrografik ve Mineralojik İzleri

Year 2018, Volume: 4 Issue: 1, 49 - 73, 30.06.2018

Abstract



Çalışma
alanı stratigrafisi Kretase yaşlı bazalt ve bazaltik andezitler ile başlayıp bu
kayaçların ayrışması ile oluşan ürünler ile devam eder. Bu istif üzerinde İstanbul’un
güneyindeki kayaçların ayrışma ürünü kumlar yer alır ve güncel çökeller ile
sonlanır. Birimlerin fizikomekanik, kayaç değişim değeri (KDD), kayaç değişim
oranı (KDO), pelitler ile psammitlerin içerisindeki killerin serbest şişme (SŞ)
değeri hesaplanmıştır. Çalışma alanı için KDD – KDO ve KDO – KDD, porozite –
serbest şişme, porozite – birim hacim ağırlık değerleri, KDD – dane birim hacim
ağırlık, KDO – dane birim hacim ağırlık, nokta yük –  KDD, nokta yük – KDO arasında güvenilir
eşitlikler önerilmiştir. Volkaniklerin orta ayrışmadan ileri ayrışma aşamasına
geçişte bölgenin volkanizma etkisinde kaldığı belirlenmiştir. 

References

  • [1] Özgül, N. (2011). İstanbul İl Alanının Jeolojisi. İBB, Deprem Risk Yönetimi ve Kentsel İyileştirme Daire Başkanlığı, Deprem ve Zemin İnceleme Müdürlüğü, İstanbul.
  • [2] Reiche, P. (1943). Graphic presentation of chemical weathering. Journal of Sedimentary Petrology, 13, 2, 58-68.
  • [3] Ruxton, B.P. (1968). Measures of the degree of chemical weathering of rocks. Journal of Geology, 76, 518-527.
  • [4] Parker, A. (1970). An index of weathering for silicate rocks. Geological Magazine, 103, 501-504.
  • [5] Vogt, T. (1927). Sulitjelmefeltets geologiog petrografi. Norges Geologiske Undersøkelse, 121, 1-560.
  • [6] Roaldset, E. (1972). Mineralogy and geochemistry of Quaternary Clays in Numedal Area, Southern Norway. Narsk. Geol. Tidsskr, 52, 335-369.
  • [7] Vogel, D.E. (1975). Precambrian weathering in acid metavolcanic rocks for the Superior Province, Villebond Township, South- central Quebec. Canadian Journal of Earth Science, 12, 2080-2085.
  • [8] Nesbitt, H.W. & Young, G.M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of Lutites. Nature, 299, 715-717.
  • [9] Harnois, L. (1988). The CIW index: a new chemical index of weathering. Sedimentary Geology, 55, 319-355.
  • [10] Sueoka, T., Lee, I.K., Huramatsu, M. & Imamura, S. (1985). Geomechanical properties and engineering classification for decomposed granite soils in Kaduna district, Nigeria. In: Proceedings of the First International Conference on Geomechanics in Tropical Lateritic and Saprolitic Soils, Brasil, 1, 175-186.
  • [11] Jayawardena, U. De S. (1993). Use of H2O for classification of residual soils. In: Geotechnical Engineering of Hard Soils-2/Soft Rocks. Anagnostopoulos et al. (eds.), Balkema, Rotterdam, 169-171.
  • [12] Jayawardena, U. De S. & Izawa, E. (1994). Application of present indices of chemical weathering for Precambrian metamorphic rocks in Sri Lanka. Bulletin International Association of Engineering Geology, 49, 55-61.
  • [13] Irfan, T.Y. (1996). Mineralogy, fabric properties and classification of weathered granites in Hong Kong. Quarterly Journal of Engineering Geology, 29, 5-35.
  • [14] Fedo, C.M., Nesbıtt, H.W., Young, G.M., (1995). Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921-924.
  • [15] Harnois, L. (1988). The CIW index: a new chemical index of weathering. Sedimentary Geology, 55, 319-355.
  • [16] Maynard, J.B. (1992). Chemistry of modern soils as a guide to interpreting Precambrian paleosols. The Journal of Geology 100, 279-289.
  • [17] Nesbitt, H.W. & Young, G.M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of Lutites. Nature, 299, 715-717.
  • [18] Nesbitt, H.W., Young, G.M. (1989). Formation and diagenesis of weathering profiles. Journal of Geology 97, 129-147.
  • [19] Nesbitt, H.W., Wilson, R.E. (1992). Recent chemical weathering of basalts. American Journal of Science 292, 740-777.
  • [20] Nordt, L.C., Driese, S.D. (2010). New weathering index improves paleorainfall estimates from Vertisols. Geology 38, 407-410.
  • [21] TS 699, (1987). Tabii yapı taşları – muayene ve deney metotları. ICS 91.100.01;91.100.15. Türk Standartları Enstitüsü, 76 syf., Ankara.
  • [22] TS 1900, (1987). İnşaat Mühendisliğinde zemin laboratuvar deneyleri, Türk Standartları Enstitüsü, Ankara.
  • [23] ASTM D 5731-95, (1995). Standard test method for determination of the point load strength index of rock, Annual book of ASTM standards, 04.08.
  • [24] ANON, (1979). Classification of rocks and soils for engineering geological mapping. Part I – rock and soil materials. Bull. Int. Assoc. Eng. Geol. 19, 364–371.
  • [25] Franklin, J.A. and Broch, E. (1972). The point load strength test. International Journal of Rock Mechanics and Mining Science. 9, 669-97.
  • [26] Bozkurtoğlu, E., Şans G., Eyüboğlu R. (2015). Kohezyonlu Zeminlerin Şişme Potansiyeli İçin Bir Yaklaşım: Avcilar-Esenyurt Örneği. Pamukkale Üniversitesi Mühendislik Jeolojisi Dergisi, 21(6), 270-275.
  • [27] Altmeyer, WT. (1955). Discussion of Engineering Properties of Expansive Clays. Journal of the Soil Mechanics and Foundation Division, American Society of Testing and Materials, 81(2), 17-19.
  • [28] Bozkurtoğlu, E., Çanakkale-Tuzla Yöresi Volkanik Kayaçlarında Süreksizliklerin Ayrışma-Alterasyon Olaylarına Etkisinin Araştırılması. Doktora Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, S 121-123, 2003.
  • [29] Bozkurtoğlu, E., Vardar M., Suner F., Zambak C. (2006). A new numerical approach to weathering and alteration in rock using a pilot area in the Tuzla geothermal area, Turkey. Engineering Geology 87, 33-47.
Year 2018, Volume: 4 Issue: 1, 49 - 73, 30.06.2018

Abstract

References

  • [1] Özgül, N. (2011). İstanbul İl Alanının Jeolojisi. İBB, Deprem Risk Yönetimi ve Kentsel İyileştirme Daire Başkanlığı, Deprem ve Zemin İnceleme Müdürlüğü, İstanbul.
  • [2] Reiche, P. (1943). Graphic presentation of chemical weathering. Journal of Sedimentary Petrology, 13, 2, 58-68.
  • [3] Ruxton, B.P. (1968). Measures of the degree of chemical weathering of rocks. Journal of Geology, 76, 518-527.
  • [4] Parker, A. (1970). An index of weathering for silicate rocks. Geological Magazine, 103, 501-504.
  • [5] Vogt, T. (1927). Sulitjelmefeltets geologiog petrografi. Norges Geologiske Undersøkelse, 121, 1-560.
  • [6] Roaldset, E. (1972). Mineralogy and geochemistry of Quaternary Clays in Numedal Area, Southern Norway. Narsk. Geol. Tidsskr, 52, 335-369.
  • [7] Vogel, D.E. (1975). Precambrian weathering in acid metavolcanic rocks for the Superior Province, Villebond Township, South- central Quebec. Canadian Journal of Earth Science, 12, 2080-2085.
  • [8] Nesbitt, H.W. & Young, G.M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of Lutites. Nature, 299, 715-717.
  • [9] Harnois, L. (1988). The CIW index: a new chemical index of weathering. Sedimentary Geology, 55, 319-355.
  • [10] Sueoka, T., Lee, I.K., Huramatsu, M. & Imamura, S. (1985). Geomechanical properties and engineering classification for decomposed granite soils in Kaduna district, Nigeria. In: Proceedings of the First International Conference on Geomechanics in Tropical Lateritic and Saprolitic Soils, Brasil, 1, 175-186.
  • [11] Jayawardena, U. De S. (1993). Use of H2O for classification of residual soils. In: Geotechnical Engineering of Hard Soils-2/Soft Rocks. Anagnostopoulos et al. (eds.), Balkema, Rotterdam, 169-171.
  • [12] Jayawardena, U. De S. & Izawa, E. (1994). Application of present indices of chemical weathering for Precambrian metamorphic rocks in Sri Lanka. Bulletin International Association of Engineering Geology, 49, 55-61.
  • [13] Irfan, T.Y. (1996). Mineralogy, fabric properties and classification of weathered granites in Hong Kong. Quarterly Journal of Engineering Geology, 29, 5-35.
  • [14] Fedo, C.M., Nesbıtt, H.W., Young, G.M., (1995). Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921-924.
  • [15] Harnois, L. (1988). The CIW index: a new chemical index of weathering. Sedimentary Geology, 55, 319-355.
  • [16] Maynard, J.B. (1992). Chemistry of modern soils as a guide to interpreting Precambrian paleosols. The Journal of Geology 100, 279-289.
  • [17] Nesbitt, H.W. & Young, G.M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of Lutites. Nature, 299, 715-717.
  • [18] Nesbitt, H.W., Young, G.M. (1989). Formation and diagenesis of weathering profiles. Journal of Geology 97, 129-147.
  • [19] Nesbitt, H.W., Wilson, R.E. (1992). Recent chemical weathering of basalts. American Journal of Science 292, 740-777.
  • [20] Nordt, L.C., Driese, S.D. (2010). New weathering index improves paleorainfall estimates from Vertisols. Geology 38, 407-410.
  • [21] TS 699, (1987). Tabii yapı taşları – muayene ve deney metotları. ICS 91.100.01;91.100.15. Türk Standartları Enstitüsü, 76 syf., Ankara.
  • [22] TS 1900, (1987). İnşaat Mühendisliğinde zemin laboratuvar deneyleri, Türk Standartları Enstitüsü, Ankara.
  • [23] ASTM D 5731-95, (1995). Standard test method for determination of the point load strength index of rock, Annual book of ASTM standards, 04.08.
  • [24] ANON, (1979). Classification of rocks and soils for engineering geological mapping. Part I – rock and soil materials. Bull. Int. Assoc. Eng. Geol. 19, 364–371.
  • [25] Franklin, J.A. and Broch, E. (1972). The point load strength test. International Journal of Rock Mechanics and Mining Science. 9, 669-97.
  • [26] Bozkurtoğlu, E., Şans G., Eyüboğlu R. (2015). Kohezyonlu Zeminlerin Şişme Potansiyeli İçin Bir Yaklaşım: Avcilar-Esenyurt Örneği. Pamukkale Üniversitesi Mühendislik Jeolojisi Dergisi, 21(6), 270-275.
  • [27] Altmeyer, WT. (1955). Discussion of Engineering Properties of Expansive Clays. Journal of the Soil Mechanics and Foundation Division, American Society of Testing and Materials, 81(2), 17-19.
  • [28] Bozkurtoğlu, E., Çanakkale-Tuzla Yöresi Volkanik Kayaçlarında Süreksizliklerin Ayrışma-Alterasyon Olaylarına Etkisinin Araştırılması. Doktora Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, S 121-123, 2003.
  • [29] Bozkurtoğlu, E., Vardar M., Suner F., Zambak C. (2006). A new numerical approach to weathering and alteration in rock using a pilot area in the Tuzla geothermal area, Turkey. Engineering Geology 87, 33-47.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Issue
Authors

Erkan Bozkurtoğlu 0000-0003-4534-5611

Şenel Özdamar

Mustafa Kumral

Publication Date June 30, 2018
Published in Issue Year 2018 Volume: 4 Issue: 1

Cite

APA Bozkurtoğlu, E., Özdamar, Ş., & Kumral, M. (2018). İstanbul Doğu Yakası Magmatik Kayaçlarının Ayrışması ve Ayrışmanın Jeolojik, Petrografik ve Mineralojik İzleri. Kırklareli Üniversitesi Mühendislik Ve Fen Bilimleri Dergisi, 4(1), 49-73.