Year 2021,
Volume: 7 Issue: 1, 57 - 73, 30.06.2021
Ebru Efeoğlu
,
Gürkan Tuna
References
- Grau, L. et al. Operative trends in the treatment of hip fractures and the role of arthroplasty, Geriatric orthopaedic surgery & rehabilitation Vol.9, 2151459318760634, 2018
- Gasbarra, E. et al. Total hip arthroplasty revision in elderly patients, Aging clinical and experimental research 25, Vol.1, 61-63, 2013
- Lee, J.-M. The current concepts of total hip arthroplasty, Hip & pelvis 28 Vol.4, 191, 2016
- Schwartz, B.E. et al. Revision total hip arthroplasty in the United States: national trends and in-hospital outcomes. International orthopaedics 40, Vol.9, 1793-1802, 2016.
- Saleem, M. et al. X-ray image analysis for automated knee osteoarthritis detection, Signal, Image and Video Processing 14, Vol.6, 1079-1087, 2020.
- Bredow, J. et al. Software-based matching of X-ray images and 3d models of knee prostheses, Technology and Health Care 22, Vol.6, 895-900, 2014.
- Wu, J. and Mahfouz, M.R. Robust x-ray image segmentation by spectral clustering and active shape model, Journal of Medical Imaging 3 Vol.3, 034005, 2016.
- Cover, T. and Hart, P. Nearest neighbor pattern classification, IEEE transactions on information theory 13, Vol.1, 21-27, 1967.
- Cortes, C. and Vapnik, V. Support-vector networks. Machine learning 20, Vol.3, 273-297, 1995.
- John, G.H. and Langley, P. Estimating continuous distributions in Bayesian classifiers, arXiv preprint arXiv:1302.4964, 2013.
- Landwehr, N. et al. Logistic model trees, Machine learning 59 (1-2), 161-205, 2005.
- Geurts, P. et al. Extremely randomized trees, Machine learning 63, Vol.1, 3-42, 2006.
- Hulten, G. et al., Mining time-changing data streams, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 97-106, 2001.
- Umadevi, N. and Geethalakshmi, S., Multiple classification system for fracture detection in human bone x-ray images, Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12), IEEE, 2012, pp. 1-8, 2012.
- Lee, S. et al. The exploration of feature extraction and machine learning for predicting bone density from simple spine X-ray images in a Korean population, Skeletal radiology 49 Vol.4, 613-618, 2020.
- Kang, Y.-J. et al. Machine learning–based identification of hip arthroplasty designs. Journal of orthopaedic translation 21, 13-17, 2020.
- Sukegawa, S. et al. Deep neural networks for dental implant system classification, Biomolecules 10 Vol.7, 984, 2020.
- Kokkotis, C. et al. Machine learning in knee osteoarthritis: A review, Osteoarthritis and Cartilage Open, 100069, 2020.
- Kotti, M. et al. The complexity of human walking: a knee osteoarthritis study, PloS one 9 Vol.9, e107325, 2014.
- Hough, P.V., Method and means for recognizing complex patterns, Google Patents, 1962.
- Stark, M.B.C.G. Automatic detection and segmentation of shoulder implants in x-ray images, 2018.
- Urban, G. et al. Classifying shoulder implants in X-ray images using deep learning, Computational and structural biotechnology journal 18, 967-972, 2020.
- Yi, P.H. et al. Automated detection and classification of shoulder arthroplasty models using deep learning, Skeletal radiology 49, 1623-1632, 2020.
- Yang, G. et al. Tree Species Classification by Employing Multiple Features Acquired from Integrated Sensors. Journal of Sensors 2019.
- Keerthi, S.S. et al. (2001) Improvements to Platt's SMO algorithm for SVM classifier design. Neural computation 13 Vol.3, 637-649.
- Aha, D.W. et al. Instance-based learning algorithms. Machine learning 6 (1), 37-66, 1991.
- McLachlan, G.J. Discriminant analysis and statistical pattern recognition, John Wiley & Sons, 2004.
- Quinlan, J.R. Simplifying decision trees. International journal of man-machine studies 27 Vol.3, 221-234, 1987.
- Srinivasan, D.B. and Mekala, P. Mining social networking data for classification using reptree. International Journal of Advance Research in Computer Science and Management Studies 2 Vol.10., 2014.
- Pfahringer, B. Random model trees: an effective and scalable regression method, 2010.
- Breiman, L. et al. Classification and regression trees, CRC press, 1984.
- Landwehr, N. et al. Logistic model trees. Machine learning 59 (1-2), 161-205, 2005.
- Hulten, G. et al., Mining time-changing data streams, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, 2001, pp. 97-106.
- Runkler, T.A. Data Visualization. In Data Analytics, pp. 37-59, Springer, 2020.
- Joshi, R. Accuracy, precision, recall & f1 score: Interpretation of performance measures, Retrieved April 1 (2018), 2016.
- Brownlee, J. Classification accuracy is not enough: More performance measures you can use, Machine Learning Mastery 21, 2014.
- Platt, J. Sequential minimal optimization: A fast algorithm for training support vector machines, 1998.
- Al Snousy, M.B. et al. Suite of decision tree-based classification algorithms on cancer gene expression data, Egyptian Informatics Journal 12, Vol.2, 73-82, 2011.
- Bhargava, N. et al., An approach for classification using simple CART algorithm in WEKA, 2017 11th International Conference on Intelligent Systems and Control (ISCO), IEEE, 2017, pp. 212-216.
RADYOGRAFİ GÖRÜNTÜLERİ VE SINIFLANDIRMA ALGORİTMALARI KULLANILARAK OMUZ PROTEZLERİNİN ÜRETİCİLERİNİN BELİRLENMESİ
Year 2021,
Volume: 7 Issue: 1, 57 - 73, 30.06.2021
Ebru Efeoğlu
,
Gürkan Tuna
Abstract
Omuz protezlerinin zamanla farklı nedenlerden dolayı bakımının yapılması ya da değiştirilmesi gerekebilir. Bu bakım işlemleri yine ameliyatlarla yapılır. Farklı türlerde ve farklı üreticiler tarafından üretilmiş omuz protezleri bulunmaktadır ve her birinin çıkarılmasında ve bakımının yapılmasında farklı ekipmanlar kullanılması gereklidir. Protez türü ile ilgili yeterli bilginin sağlanamadığı durumlarda bazı sorunlar ile karşılaşılabilir. Radyografi görüntülerinin görsel muayenesi ve karşılaştırılmasının uzmanlar tarafından yapılması hem yorucudur hem de süreci uzatır. Ameliyattan önce doğru donanım ve prosedürlerin seçilmesi için ameliyatı gerçekleştirecek olan cerraha bilinmeyen protezleri tanımada yardımcı olacak, hızlı ve yüksek doğruluk oranına sahip bir çözüme ihtiyaç duyulmaktadır. Bu çalışmada 3 farklı üreticiye ait omuz protezlerinin radyografi görüntülerinden tanınması için 12 farklı sınıflandırma algoritması kullanılmış ve bu algoritmaların performansları karşılaştırılmıştır. K-En Yakın Komşu algoritmasının diğer algoritmalara göre daha iyi performans sergilediği görülmüştür. Radyografi görüntülerinden protez tanımada bu algoritmanın kullanılmasının doğru tercih olacağı ve diğer protez türlerini tanımada da kullanılabileceği düşünülmektedir.
References
- Grau, L. et al. Operative trends in the treatment of hip fractures and the role of arthroplasty, Geriatric orthopaedic surgery & rehabilitation Vol.9, 2151459318760634, 2018
- Gasbarra, E. et al. Total hip arthroplasty revision in elderly patients, Aging clinical and experimental research 25, Vol.1, 61-63, 2013
- Lee, J.-M. The current concepts of total hip arthroplasty, Hip & pelvis 28 Vol.4, 191, 2016
- Schwartz, B.E. et al. Revision total hip arthroplasty in the United States: national trends and in-hospital outcomes. International orthopaedics 40, Vol.9, 1793-1802, 2016.
- Saleem, M. et al. X-ray image analysis for automated knee osteoarthritis detection, Signal, Image and Video Processing 14, Vol.6, 1079-1087, 2020.
- Bredow, J. et al. Software-based matching of X-ray images and 3d models of knee prostheses, Technology and Health Care 22, Vol.6, 895-900, 2014.
- Wu, J. and Mahfouz, M.R. Robust x-ray image segmentation by spectral clustering and active shape model, Journal of Medical Imaging 3 Vol.3, 034005, 2016.
- Cover, T. and Hart, P. Nearest neighbor pattern classification, IEEE transactions on information theory 13, Vol.1, 21-27, 1967.
- Cortes, C. and Vapnik, V. Support-vector networks. Machine learning 20, Vol.3, 273-297, 1995.
- John, G.H. and Langley, P. Estimating continuous distributions in Bayesian classifiers, arXiv preprint arXiv:1302.4964, 2013.
- Landwehr, N. et al. Logistic model trees, Machine learning 59 (1-2), 161-205, 2005.
- Geurts, P. et al. Extremely randomized trees, Machine learning 63, Vol.1, 3-42, 2006.
- Hulten, G. et al., Mining time-changing data streams, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 97-106, 2001.
- Umadevi, N. and Geethalakshmi, S., Multiple classification system for fracture detection in human bone x-ray images, Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12), IEEE, 2012, pp. 1-8, 2012.
- Lee, S. et al. The exploration of feature extraction and machine learning for predicting bone density from simple spine X-ray images in a Korean population, Skeletal radiology 49 Vol.4, 613-618, 2020.
- Kang, Y.-J. et al. Machine learning–based identification of hip arthroplasty designs. Journal of orthopaedic translation 21, 13-17, 2020.
- Sukegawa, S. et al. Deep neural networks for dental implant system classification, Biomolecules 10 Vol.7, 984, 2020.
- Kokkotis, C. et al. Machine learning in knee osteoarthritis: A review, Osteoarthritis and Cartilage Open, 100069, 2020.
- Kotti, M. et al. The complexity of human walking: a knee osteoarthritis study, PloS one 9 Vol.9, e107325, 2014.
- Hough, P.V., Method and means for recognizing complex patterns, Google Patents, 1962.
- Stark, M.B.C.G. Automatic detection and segmentation of shoulder implants in x-ray images, 2018.
- Urban, G. et al. Classifying shoulder implants in X-ray images using deep learning, Computational and structural biotechnology journal 18, 967-972, 2020.
- Yi, P.H. et al. Automated detection and classification of shoulder arthroplasty models using deep learning, Skeletal radiology 49, 1623-1632, 2020.
- Yang, G. et al. Tree Species Classification by Employing Multiple Features Acquired from Integrated Sensors. Journal of Sensors 2019.
- Keerthi, S.S. et al. (2001) Improvements to Platt's SMO algorithm for SVM classifier design. Neural computation 13 Vol.3, 637-649.
- Aha, D.W. et al. Instance-based learning algorithms. Machine learning 6 (1), 37-66, 1991.
- McLachlan, G.J. Discriminant analysis and statistical pattern recognition, John Wiley & Sons, 2004.
- Quinlan, J.R. Simplifying decision trees. International journal of man-machine studies 27 Vol.3, 221-234, 1987.
- Srinivasan, D.B. and Mekala, P. Mining social networking data for classification using reptree. International Journal of Advance Research in Computer Science and Management Studies 2 Vol.10., 2014.
- Pfahringer, B. Random model trees: an effective and scalable regression method, 2010.
- Breiman, L. et al. Classification and regression trees, CRC press, 1984.
- Landwehr, N. et al. Logistic model trees. Machine learning 59 (1-2), 161-205, 2005.
- Hulten, G. et al., Mining time-changing data streams, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, 2001, pp. 97-106.
- Runkler, T.A. Data Visualization. In Data Analytics, pp. 37-59, Springer, 2020.
- Joshi, R. Accuracy, precision, recall & f1 score: Interpretation of performance measures, Retrieved April 1 (2018), 2016.
- Brownlee, J. Classification accuracy is not enough: More performance measures you can use, Machine Learning Mastery 21, 2014.
- Platt, J. Sequential minimal optimization: A fast algorithm for training support vector machines, 1998.
- Al Snousy, M.B. et al. Suite of decision tree-based classification algorithms on cancer gene expression data, Egyptian Informatics Journal 12, Vol.2, 73-82, 2011.
- Bhargava, N. et al., An approach for classification using simple CART algorithm in WEKA, 2017 11th International Conference on Intelligent Systems and Control (ISCO), IEEE, 2017, pp. 212-216.