Research Article
BibTex RIS Cite

Kendisi ve Tersi Yalınkat Fonksiyonların Balans Polinomları ile Tanımlanan Bazı Yeni Alt Sınıfları Üzerine

Year 2023, , 25 - 32, 30.06.2023
https://doi.org/10.55213/kmujens.1252471

Abstract

Bu makalede, Balans polinomları kullanılarak kendisi ve tersi yalınkat olan analitik fonksiyonların iki yeni alt sınıfı tanıtılmıştır. Daha sonra, bu yeni sınıflara ait fonksiyonların ilk iki Taylor-Maclaurin katsayıları için katsayı tahminleri belirlenmiştir. Son olarak, tanımlanan sınıflardaki fonksiyonlar i¸cin Fekete-Szegö problemi ele alınıp incelenmiştir

References

  • Behera A., Panda GK., On the square roots of triangular numbers, Fibonacci Quart., 37, 98–105, (1999).
  • Brannan D., Clunie J., Aspects of contemporary complex analysis, Academic Press, New York, (1980).
  • Brannan D., Taha TS., On some classes of bi-univalent functions, In: Proceedings of the International Conference on Mathematical Analysis and its Applications, Math. Anal. Appl., 53–60, (1988).
  • Buyankara M., C¸ a˘glar M., Cotˆırl˘a LI., New Subclasses of Bi-Univalent Functions with Respect to the Symmetric Points Defined by Bernoulli Polynomials, Axioms, 11(11), Art. 652, (2022).
  • Çağlar M., Cotˆırl˘a LI., Buyankara M., Fekete–Szeg¨o Inequalities for a New Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials, Symmetry, 14(8), Art. 1572, (2022).
  • Çağlar M., Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Acad. Bulgare Sci., 72, 1608–1615, (2019).
  • Çağlar M., Orhan H., Ya˘gmur N., Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27, 1165–1171, (2013).
  • Davala RK., Panda GK., On sum and ratio formulas for balancing numbers, J. Indian Math. Soc. (N.S.), 82(1-2), 23–32,(2015).
  • Duren PL., Univalent Functions, In: Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo, Springer-Verlag, (1983).
  • Frasin BA., Swamy SR., Aldawish I., A comprehensive family of bi-univalent functions defined by k-Fibonacci numbers, J. Funct. Spaces, 2021, Art. 4249509, (2021).
  • Frasin BA., Swamy SR., Nirmala J., Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified Sigmoid activation function, Afr. Math., 32, 631–643, (2021).
  • Frontczak R., On balancing polynomials, Appl. Math. Sci., 13(2), 57–66, (2019).
  • Frontczak R., Baden-W¨urttemberg L., A note on hybrid convolutions involving balancing and Lucas-balancing numbers, Appl. Math. Sci., 12(25), 2001–2008, (2018).
  • Frontczak R., Baden-W¨urttemberg L., Sums of balancing and Lucas-balancing numbers with binomial coefficients,Int. J. Math. Anal., 12(12), 585–594, (2018).
  • Güney HO., Murugusundaramoorthy G., Soko l J., Subclasses of bi-univalent functions related to shell-like curves ¨connected with Fibonacci numbers, Acta Univ. Sapientiae Math., 10, 70–84, (2018).
  • Güney HO., Murugusundaramoorthy G., Soko l J., Certain subclasses of bi-univalent functions related to ¨ k-Fibonacci numbers, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68, 1909–1921, (2019).
  • Keskin R., Karaatlı O., Some new properties of balancing numbers and square triangular numbers, J. Integer Seq.,15(1), 1–13, (2012).
  • Komatsu T., Panda GK., On several kinds of sums of balancing numbers, arXiv:1608.05918, (2016).
  • Lewin M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18, 63–68, (1967).
  • Miller SS., Mocanu PT., Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics,225, Marcel Dekker, Inc., New York, (2000).
  • Orhan H., Toklu E., Kadıo˘glu E., Second Hankel determinant for certain subclasses of bi-univalent functions involving Chebyshev polynomials, Turkish J. Math., 42(4), 1927–1940, (2018).
  • Patel BK., Irmak N., Ray PK., Incomplete balancing and Lucas-balancing numbers, Math. Rep., 20(70), 59–72, (2018).
  • Ray PK., Some Congruences for Balancing and Lucas-Balancing Numbers and Their Applications, Integers, 14, A8,(2014).
  • Ray PK., On the properties of k-balancing numbers, Ain Shams Engineering Journal, 9(3), 395–402, (2018).
  • Ray PK., Balancing and Lucas-balancing sums by matrix methods, Math. Rep. (Bucur.), 17(2), 225–233, (2015).
  • Srivastava HM., Mishra AK., Gochhayat P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23, 1188–1192, (2010).
  • Srivastava HM., Bulut S., C¸ a˘glar M., Ya˘gmur N., Coefficient estimates for a general subclass of analytic and biunivalent functions, Filomat, 27, 831–842, (2013).
  • Toklu E., A new subclass of bi-univalent functions defined by q-derivative, TWMS J. of Apl. & Eng. Math., 9(1), 84–90, (2019).
  • Toklu E., Aktaş İ., Sagsoz F., On new subclasses of bi-univalent functions defined by generalized S˘al˘agean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68(1), 776-783, (2019).
  • Zaprawa P., On the Fekete-Szeg¨o problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21(1), 169–178, (2014).

On some new subclasses of bi-univalent functions defined by Balancing polynomials

Year 2023, , 25 - 32, 30.06.2023
https://doi.org/10.55213/kmujens.1252471

Abstract

In this paper, two new subclasses of holomorphic and bi-univalent functions are introduced by using Balancing polynomials. Then, coefficient estmations are determined for the first two coefficients of functions belonging to these new classses. Finally, the Fekete-Szeg¨o problem is handled for the functions in subclasses defined.

References

  • Behera A., Panda GK., On the square roots of triangular numbers, Fibonacci Quart., 37, 98–105, (1999).
  • Brannan D., Clunie J., Aspects of contemporary complex analysis, Academic Press, New York, (1980).
  • Brannan D., Taha TS., On some classes of bi-univalent functions, In: Proceedings of the International Conference on Mathematical Analysis and its Applications, Math. Anal. Appl., 53–60, (1988).
  • Buyankara M., C¸ a˘glar M., Cotˆırl˘a LI., New Subclasses of Bi-Univalent Functions with Respect to the Symmetric Points Defined by Bernoulli Polynomials, Axioms, 11(11), Art. 652, (2022).
  • Çağlar M., Cotˆırl˘a LI., Buyankara M., Fekete–Szeg¨o Inequalities for a New Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials, Symmetry, 14(8), Art. 1572, (2022).
  • Çağlar M., Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Acad. Bulgare Sci., 72, 1608–1615, (2019).
  • Çağlar M., Orhan H., Ya˘gmur N., Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27, 1165–1171, (2013).
  • Davala RK., Panda GK., On sum and ratio formulas for balancing numbers, J. Indian Math. Soc. (N.S.), 82(1-2), 23–32,(2015).
  • Duren PL., Univalent Functions, In: Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo, Springer-Verlag, (1983).
  • Frasin BA., Swamy SR., Aldawish I., A comprehensive family of bi-univalent functions defined by k-Fibonacci numbers, J. Funct. Spaces, 2021, Art. 4249509, (2021).
  • Frasin BA., Swamy SR., Nirmala J., Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified Sigmoid activation function, Afr. Math., 32, 631–643, (2021).
  • Frontczak R., On balancing polynomials, Appl. Math. Sci., 13(2), 57–66, (2019).
  • Frontczak R., Baden-W¨urttemberg L., A note on hybrid convolutions involving balancing and Lucas-balancing numbers, Appl. Math. Sci., 12(25), 2001–2008, (2018).
  • Frontczak R., Baden-W¨urttemberg L., Sums of balancing and Lucas-balancing numbers with binomial coefficients,Int. J. Math. Anal., 12(12), 585–594, (2018).
  • Güney HO., Murugusundaramoorthy G., Soko l J., Subclasses of bi-univalent functions related to shell-like curves ¨connected with Fibonacci numbers, Acta Univ. Sapientiae Math., 10, 70–84, (2018).
  • Güney HO., Murugusundaramoorthy G., Soko l J., Certain subclasses of bi-univalent functions related to ¨ k-Fibonacci numbers, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68, 1909–1921, (2019).
  • Keskin R., Karaatlı O., Some new properties of balancing numbers and square triangular numbers, J. Integer Seq.,15(1), 1–13, (2012).
  • Komatsu T., Panda GK., On several kinds of sums of balancing numbers, arXiv:1608.05918, (2016).
  • Lewin M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18, 63–68, (1967).
  • Miller SS., Mocanu PT., Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics,225, Marcel Dekker, Inc., New York, (2000).
  • Orhan H., Toklu E., Kadıo˘glu E., Second Hankel determinant for certain subclasses of bi-univalent functions involving Chebyshev polynomials, Turkish J. Math., 42(4), 1927–1940, (2018).
  • Patel BK., Irmak N., Ray PK., Incomplete balancing and Lucas-balancing numbers, Math. Rep., 20(70), 59–72, (2018).
  • Ray PK., Some Congruences for Balancing and Lucas-Balancing Numbers and Their Applications, Integers, 14, A8,(2014).
  • Ray PK., On the properties of k-balancing numbers, Ain Shams Engineering Journal, 9(3), 395–402, (2018).
  • Ray PK., Balancing and Lucas-balancing sums by matrix methods, Math. Rep. (Bucur.), 17(2), 225–233, (2015).
  • Srivastava HM., Mishra AK., Gochhayat P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23, 1188–1192, (2010).
  • Srivastava HM., Bulut S., C¸ a˘glar M., Ya˘gmur N., Coefficient estimates for a general subclass of analytic and biunivalent functions, Filomat, 27, 831–842, (2013).
  • Toklu E., A new subclass of bi-univalent functions defined by q-derivative, TWMS J. of Apl. & Eng. Math., 9(1), 84–90, (2019).
  • Toklu E., Aktaş İ., Sagsoz F., On new subclasses of bi-univalent functions defined by generalized S˘al˘agean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68(1), 776-783, (2019).
  • Zaprawa P., On the Fekete-Szeg¨o problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21(1), 169–178, (2014).
There are 30 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

İbrahim Aktaş 0000-0003-4570-4485

İnci Karaman This is me 0000-0002-8497-9716

Publication Date June 30, 2023
Submission Date February 17, 2023
Published in Issue Year 2023

Cite

APA Aktaş, İ., & Karaman, İ. (2023). On some new subclasses of bi-univalent functions defined by Balancing polynomials. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, 5(1), 25-32. https://doi.org/10.55213/kmujens.1252471
AMA Aktaş İ, Karaman İ. On some new subclasses of bi-univalent functions defined by Balancing polynomials. KMUJENS. June 2023;5(1):25-32. doi:10.55213/kmujens.1252471
Chicago Aktaş, İbrahim, and İnci Karaman. “On Some New Subclasses of Bi-Univalent Functions Defined by Balancing Polynomials”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi 5, no. 1 (June 2023): 25-32. https://doi.org/10.55213/kmujens.1252471.
EndNote Aktaş İ, Karaman İ (June 1, 2023) On some new subclasses of bi-univalent functions defined by Balancing polynomials. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 5 1 25–32.
IEEE İ. Aktaş and İ. Karaman, “On some new subclasses of bi-univalent functions defined by Balancing polynomials”, KMUJENS, vol. 5, no. 1, pp. 25–32, 2023, doi: 10.55213/kmujens.1252471.
ISNAD Aktaş, İbrahim - Karaman, İnci. “On Some New Subclasses of Bi-Univalent Functions Defined by Balancing Polynomials”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 5/1 (June 2023), 25-32. https://doi.org/10.55213/kmujens.1252471.
JAMA Aktaş İ, Karaman İ. On some new subclasses of bi-univalent functions defined by Balancing polynomials. KMUJENS. 2023;5:25–32.
MLA Aktaş, İbrahim and İnci Karaman. “On Some New Subclasses of Bi-Univalent Functions Defined by Balancing Polynomials”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, vol. 5, no. 1, 2023, pp. 25-32, doi:10.55213/kmujens.1252471.
Vancouver Aktaş İ, Karaman İ. On some new subclasses of bi-univalent functions defined by Balancing polynomials. KMUJENS. 2023;5(1):25-32.

KMUJENS’nde yayınlanan makaleler Creative Commons Atıf-Gayriticari 4.0 Uluslararası Lisansı (CC BY-NC) ile lisanslanmıştır. İçeriğin ticari amaçlı kullanımı yasaktır. Dergide yer alan makaleler, yazarına ve orijinal kaynağa atıfta bulunulduğu sürece kullanılabilir.