Research Article
BibTex RIS Cite

Monoidlerin Schützenberger – Çapraz Çarpımının Tam Yeniden Yazma Sistemi

Year 2024, , 33 - 40, 15.12.2024
https://doi.org/10.55213/kmujens.1564195

Abstract

Bu makalede, (Emin ve ark. 2013) de tanımlanan iki devirli monoidin Schützenberger – çapraz çarpımının tam yeniden yazma sistemi çalışılmıştır. Ayrıca bu monoid yapısının elemanlarının normal form yapısı elde edilmiştir ve kelime probleminin çözülebilirliği verilmiştir. Son olarak, bir örnek bölüm sunulmuştur.

References

  • Adyan SI, Durnev VG (2000). Decision problems for groups and semigroups. Russian Mathematical Surveys, 55(2): 207-296.
  • Agore AL, Militaru G (2008). Crossed product of groups, applications. Arab. J.Sci. Eng. 33: 1-17.
  • Agore AL, Fratila D (2010). Crossed product of cyclic groups. Czechoslov. Math. J. 60(135): 889-901.
  • Ateş F, Karpuz EG, Çevik AS (2009). Regular and -inverse monoids under Schützenberger product. Algebras, Groups and Geometries, 27(4): 455-470.
  • Ateş F (2009). Some new monoid and group constructions under semidirect product. Ars Combinatoria, 91: 203-218.
  • Ateş F, Karpuz EG, Kocapinar C, Çevik AS (2011). Gröbner–Shirshov bases of some monoids. Discrete Mathematics, 311(6): 1064-1071.
  • Ateş F, Çevik AS, Karpuz EG (2021). On the geometry of the crossed product of groups. Bulletin of the Korean Math. Society, 58(5): 1301-1314.
  • Book RV (1987). Thue systems as rewriting systems. J. Symbolic Computation, 3(1-2): 39-68.
  • Book RV, Otto F (1993). String-Rewriting Systems. Springer-Verlag, New York.
  • Çetinalp EK, Karpuz EG, Ateş F, Çevik AS (2016). Two-sided crossed product of groups. Filomat, 30(4): 1005-1012.
  • Çetinalp EK, Karpuz EG (2018). Iterated crossed product of cyclic groups. Bulletin of the Iran Math. Soc. 44(6): 1493-1508.
  • Çetinalp EK, Karpuz EG, Çevik AS (2019). Complete rewriting system for Schützenberger product of groups. Asian-European Journal of Math. 12(1): 1950012.
  • Çetinalp EK (2022). Iterated bicrossed product of groups. Konuralp Journal of Mathematics, 10(1): 134–137.
  • Çetinalp EK (2023). A Generalization of bicrossed product of monoids. Asian-European Journal of Math. 16(10): 2350184.
  • Çevik A, Karpuz EG, Çetinalp EK (2020). Complete rewriting system for crossed product of infinite groups. Erzincan University Journal of Science and Technology, 13(1): 112-118.
  • Dehn M (1911). Uber unendliche diskontinuerliche Gruppen, Mathematische Annalen, 71: 116-144.
  • Emin A, Ateş F, Ikikardeş S, Cangül IN (2013). A new monoid construction under crossed products, Journal of Inequalities and Applications, 244.
  • Gracinda MSG, Sezinando H, Pin JE (2006). Presentations of the Schützenberger product of groups. Communication in Algebra, 34(4): 1213-1235.
  • Howie JM, Ruškuc N (1994). Constructions and presentations for monoids. Communications in Algebra, 22(15): 6209-6224.
  • Karpuz EG, Ateş F, Çevik AS (2010). Regular and -inverse monoids under Schützenberger products. Algebras Groups and Geometries, 27: 455- 471.
  • Karpuz EG, Ateş F, Çevik AS, Cangül IN (2016). A presentation and some finiteness conditions for a new version of the Schützenberger product of monoids, Turkish Journal of Mathematics, 40: 224–233.
  • Karpuz EG, Çetinalp EK (2016). Growth series of crossed and two-sided crossed products of cyclic groups. Mathematica Slovaca, 68(3): 1-12.
  • Karpuz EG, Çetinalp EK (2024). Some remarks on the Schützenberger product of monoids. Ricerche di Matematica, 73: 2159-2171.
  • Schützenberger MP (1965). On finite monoids having only trivial subgroups. Information and Control, 8: 190-194.
  • Sims CC (1994). Computation for Finitely Presented Groups. Cambridge University Press.
  • Straubing HA (1981). Generalization of the Schützenberger product of finite monoids. Theoretical Computer Science, 13: 137-150.

Complete Rewriting System of Schützenberger – Crossed Product of Monoids

Year 2024, , 33 - 40, 15.12.2024
https://doi.org/10.55213/kmujens.1564195

Abstract

In this paper, we study on complete rewriting system for the Schützenberger - crossed product of two cyclic monoids, which is defined in (Emin et al. 2013). Additionally, we obtain normal form structure of elements of this monoid construction and give solvability of the word problem. Finally, we present an example part.

References

  • Adyan SI, Durnev VG (2000). Decision problems for groups and semigroups. Russian Mathematical Surveys, 55(2): 207-296.
  • Agore AL, Militaru G (2008). Crossed product of groups, applications. Arab. J.Sci. Eng. 33: 1-17.
  • Agore AL, Fratila D (2010). Crossed product of cyclic groups. Czechoslov. Math. J. 60(135): 889-901.
  • Ateş F, Karpuz EG, Çevik AS (2009). Regular and -inverse monoids under Schützenberger product. Algebras, Groups and Geometries, 27(4): 455-470.
  • Ateş F (2009). Some new monoid and group constructions under semidirect product. Ars Combinatoria, 91: 203-218.
  • Ateş F, Karpuz EG, Kocapinar C, Çevik AS (2011). Gröbner–Shirshov bases of some monoids. Discrete Mathematics, 311(6): 1064-1071.
  • Ateş F, Çevik AS, Karpuz EG (2021). On the geometry of the crossed product of groups. Bulletin of the Korean Math. Society, 58(5): 1301-1314.
  • Book RV (1987). Thue systems as rewriting systems. J. Symbolic Computation, 3(1-2): 39-68.
  • Book RV, Otto F (1993). String-Rewriting Systems. Springer-Verlag, New York.
  • Çetinalp EK, Karpuz EG, Ateş F, Çevik AS (2016). Two-sided crossed product of groups. Filomat, 30(4): 1005-1012.
  • Çetinalp EK, Karpuz EG (2018). Iterated crossed product of cyclic groups. Bulletin of the Iran Math. Soc. 44(6): 1493-1508.
  • Çetinalp EK, Karpuz EG, Çevik AS (2019). Complete rewriting system for Schützenberger product of groups. Asian-European Journal of Math. 12(1): 1950012.
  • Çetinalp EK (2022). Iterated bicrossed product of groups. Konuralp Journal of Mathematics, 10(1): 134–137.
  • Çetinalp EK (2023). A Generalization of bicrossed product of monoids. Asian-European Journal of Math. 16(10): 2350184.
  • Çevik A, Karpuz EG, Çetinalp EK (2020). Complete rewriting system for crossed product of infinite groups. Erzincan University Journal of Science and Technology, 13(1): 112-118.
  • Dehn M (1911). Uber unendliche diskontinuerliche Gruppen, Mathematische Annalen, 71: 116-144.
  • Emin A, Ateş F, Ikikardeş S, Cangül IN (2013). A new monoid construction under crossed products, Journal of Inequalities and Applications, 244.
  • Gracinda MSG, Sezinando H, Pin JE (2006). Presentations of the Schützenberger product of groups. Communication in Algebra, 34(4): 1213-1235.
  • Howie JM, Ruškuc N (1994). Constructions and presentations for monoids. Communications in Algebra, 22(15): 6209-6224.
  • Karpuz EG, Ateş F, Çevik AS (2010). Regular and -inverse monoids under Schützenberger products. Algebras Groups and Geometries, 27: 455- 471.
  • Karpuz EG, Ateş F, Çevik AS, Cangül IN (2016). A presentation and some finiteness conditions for a new version of the Schützenberger product of monoids, Turkish Journal of Mathematics, 40: 224–233.
  • Karpuz EG, Çetinalp EK (2016). Growth series of crossed and two-sided crossed products of cyclic groups. Mathematica Slovaca, 68(3): 1-12.
  • Karpuz EG, Çetinalp EK (2024). Some remarks on the Schützenberger product of monoids. Ricerche di Matematica, 73: 2159-2171.
  • Schützenberger MP (1965). On finite monoids having only trivial subgroups. Information and Control, 8: 190-194.
  • Sims CC (1994). Computation for Finitely Presented Groups. Cambridge University Press.
  • Straubing HA (1981). Generalization of the Schützenberger product of finite monoids. Theoretical Computer Science, 13: 137-150.
There are 26 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory, Group Theory and Generalisations
Journal Section Research Articles
Authors

Eylem Guzel Karpuz 0000-0002-7111-3462

Fatmanur Yıldız This is me 0009-0008-9546-8074

Early Pub Date November 29, 2024
Publication Date December 15, 2024
Submission Date October 9, 2024
Acceptance Date November 13, 2024
Published in Issue Year 2024

Cite

APA Guzel Karpuz, E., & Yıldız, F. (2024). Complete Rewriting System of Schützenberger – Crossed Product of Monoids. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, 6(2), 33-40. https://doi.org/10.55213/kmujens.1564195
AMA Guzel Karpuz E, Yıldız F. Complete Rewriting System of Schützenberger – Crossed Product of Monoids. KMUJENS. December 2024;6(2):33-40. doi:10.55213/kmujens.1564195
Chicago Guzel Karpuz, Eylem, and Fatmanur Yıldız. “Complete Rewriting System of Schützenberger – Crossed Product of Monoids”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi 6, no. 2 (December 2024): 33-40. https://doi.org/10.55213/kmujens.1564195.
EndNote Guzel Karpuz E, Yıldız F (December 1, 2024) Complete Rewriting System of Schützenberger – Crossed Product of Monoids. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 6 2 33–40.
IEEE E. Guzel Karpuz and F. Yıldız, “Complete Rewriting System of Schützenberger – Crossed Product of Monoids”, KMUJENS, vol. 6, no. 2, pp. 33–40, 2024, doi: 10.55213/kmujens.1564195.
ISNAD Guzel Karpuz, Eylem - Yıldız, Fatmanur. “Complete Rewriting System of Schützenberger – Crossed Product of Monoids”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 6/2 (December 2024), 33-40. https://doi.org/10.55213/kmujens.1564195.
JAMA Guzel Karpuz E, Yıldız F. Complete Rewriting System of Schützenberger – Crossed Product of Monoids. KMUJENS. 2024;6:33–40.
MLA Guzel Karpuz, Eylem and Fatmanur Yıldız. “Complete Rewriting System of Schützenberger – Crossed Product of Monoids”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, vol. 6, no. 2, 2024, pp. 33-40, doi:10.55213/kmujens.1564195.
Vancouver Guzel Karpuz E, Yıldız F. Complete Rewriting System of Schützenberger – Crossed Product of Monoids. KMUJENS. 2024;6(2):33-40.

KMUJENS’nde yayınlanan makaleler Creative Commons Atıf-Gayriticari 4.0 Uluslararası Lisansı (CC BY-NC) ile lisanslanmıştır. İçeriğin ticari amaçlı kullanımı yasaktır. Dergide yer alan makaleler, yazarına ve orijinal kaynağa atıfta bulunulduğu sürece kullanılabilir.