Research Article
BibTex RIS Cite

COVID-19 HASTALARINDA RETİNA KALINLIĞININ OPTİK KOHERENS TOMOGRAFİ ANALİZİ

Year 2024, , 241 - 245, 29.04.2024
https://doi.org/10.18229/kocatepetip.1197468

Abstract

AMAÇ: Bu çalışmanın amacı COVID-19 enfeksiyonu olan hastalarda retinal değişikliklerin Optik Koherens Tomografi analizini yapmak ve bunları sağlıklı kontrollerle karşılaştırmaktır.
GEREÇ VE YÖNTEM: Bu amaçla, 1 Ekim 2020 ile 1 Mayıs 2021 tarihleri arasında kliniğimize başvuran, 18 ile 68 yaş arasında, COVID-19 pozitif 42 hasta (grup 1) ve 44 sağlıklı yetişkin (grup 2) çalışmaya alındı. Santral foveal kalınlık, koroidal kalınlık (subfoveal) ve peripapiller retina sinir lifi kalınlığı ölçülmüştür. Ölçümler merkezi foveada ve merkezi foveadan 1500 μm nazal ve 1500 μm temporal noktalarda gerçekleştirilmiştir.
BULGULAR: Gruplarda yaş ve cinsiyet dağılımı benzerdir (sırasıyla p=0,610 ve p=0,992). Ancak, santral foveal kalınlık (p<0,001), subfoveal koroid kalınlığı (p=0,001) ve peripapiller retina sinir lifi tabakası kalınlığı (p<0,001) iki grup arasında anlamlı olarak farklıydı.
SONUÇ: Sonuç olarak, polymerase chain reaction pozitif COVID-19 hastalarında santral fovea, foveal altı koroid ve peripapiller retina sinir lifi tabakası kalınlığı sağlıklı kontrollere kıyasla daha yüksektir. COVID-19'un neden olduğu sistemik ve lokal değişikliklerin patogenezini anlamak için, çok sayıda hasta alt grubu ile çok merkezli ve uzun süreli çalışmalar gereklidir.

References

  • 1. Lai CC, Ko WC, Lee PI, Jean SS, Hsueh PR. Extra-respiratory manifestations of COVID-19. Int J Antimicrob Agents. 2020;56(2):106024.
  • 2. Wu P, Duan F, Luo C, et al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province. China, JAMA Ophthalmol. 2020;138 (5):575–8.
  • 3. Khavandi S, Tabibzadeh E, Naderan M, Shoar S. Corona virus disease-19 (COVID-19) presenting as conjunctivitis: atypically high-risk during a pandemic. Cont Lens Anterior Eye. 2020;43(3):211–2.
  • 4. Chen L, Deng C, Chen X, et al. Ocular manifestations and clinical characteristics of 535 cases of COVID-19 in Wuhan, China: a cross-sectional study. Acta Ophthalmol. 2020;10 (1111):14472.
  • 5. Lu CW, Liu XF, Jia ZF. 2019-nCoV transmission through the ocular surface must not be ignored. The Lancet. 2020;395(10224):39.
  • 6. Li JO, Lam DSC, Chen Y, Ting DSW. Novel coronavirus disease 2019 (COVID-19): the importance of recognising possible early ocular manifestation and using protective eyewear. Br J Ophthalmol. 2020;104(3):297– 8.
  • 7. Port AD, Orlin A, Kiss S, et al. Cytomegalovirus retinitis: a review. J Ocul Pharmacol Ther. 2017;33(4):224–34.
  • 8. Agarwal A, Invernizzi A, Acquistapace A. Analysis of retinochoroidal vasculature in human immunodeficiency virus infection using spectral-domain OCT angiography. Ophthalmol Retina. 2017;1(6):545–54.
  • 9. Pirraglia MP, Ceccarelli G, Cerini A, et al. Retinal involvement and ocular findings in COVID-19 pneumonia patients. Sci Rep. 2020;10(1):17419.
  • 10. Gavriilaki E, Brodsky RA. Severe COVID-19 infection and thrombotic microangiopathy: Success does not come easily. Br J Haematol. 2020;189(6): 222–65.
  • 11. Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–8.
  • 12. Invernizzi A, Torre A, Parrulli S. Retinal findings in patients with COVID-19: results from the SERPICO-19 study. E Clinical Medicine. 2020;27(10): 100550.
  • 13. Varga Z, Flammer AJ, Steiger P. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–8.
  • 14. Zago Filho LA, Lima LH, Melo GB, Zett C, Farah ME. Vitritis and outer retinal abnormalities in a patient with COVID-19. Ocul Immunol Inflamm. 2020:1–3.
  • 15. Abrishami M, Daneshvar R, Emamverdian Z, et al. Spectral-domain optical coherence tomography assessment of retinal and choroidal changes in patients with coronavirus disease 2019: a case-control study. J Ophthalmic Inflamm Infect. 2022;18;12(1):18.
  • 16. Burgos-Blasco B, Güemes-Villahoz N, Vidal-Villegas B, et al. Optic nerve and macular optical coherence tomography in recovered COVID-19 patients. Eur J Ophthalmol. 2022;32(1):628-36.
  • 17. Bajka A, Muth DR, Wiest MRJ, et al. Analysis of Optical Coherence Tomography (OCT) and Optical Coherence Tomography Angiography (OCTA) Parameters in Young Adults after SARS-CoV-2 Infection (COVID- 19) Compared with Healthy Young Controls. Diagnostics (Basel). 2023;28 (13):1283.
  • 18. Dağ Şeker E, Erbahçeci Timur İE. Assessment of early and long-COVID related retinal neurodegeneration with optical coherence tomography. Int Ophthalmol. 2023;43(6):2073-81.
  • 19. Cetinkaya T, Kurt MM, Akpolat C. Analysis of swept-source optical coherence tomography angiography measurement alterations in adult patients recovered from COVID-19. Clin Exp Optom. 2022;105(8):848-52.
  • 20. Kal M, Winiarczyk M, Mackiewicz J, et al. The Effect of Reduced Oxygen Saturation on Retinal Microvascularization in COVID-19 Patients with Bilateral Pneumonia Based on Optical Coherence Tomography Study. J Pers Med. 2022;12(11):1824.
  • 21. Turker IC, Dogan CU, Guven D, Kutucu OK, Gul C. Optical coherence tomography angiography findings in patients with COVID-19. Can J Ophthalmol. 2021;56(2):83-7.

OPTICAL COHERENCE TOMOGRAPHY ANALYSIS OF RETINAL THICKNESS IN COVID-19 PATIENTS

Year 2024, , 241 - 245, 29.04.2024
https://doi.org/10.18229/kocatepetip.1197468

Abstract

OBJECTIVE: The aim of this study was to perform Optical Coherence Tomography analysis of retinal changes in patients with COVID-19 infection and compare them with healthy controls.
MATERIAL AND METHODS: For this purpose, 42 COVID-19 positive patients (group 1) and 44 healthy adults (group 2), aged between 18 and 68 years, who were admitted to our clinic between October 1, 2020 and May 1, 2021, were included in the study. Central foveal thickness, choroidal thickness (subfoveal) and peripapillary retinal nerve fiber thickness were measured. Measurements were performed at the central fovea and at 1500 μm nasal and 1500 μm temporal points from the central fovea.
RESULTS: Age and gender distribution were similar in the groups (p=0.610 and p=0.992, respectively). However, central foveal thickness (p<0.001), subfoveal choroidal thickness (p=0.001) and peripapillary retinal nerve fiber layer thickness (p<0.001) were significantly different between the two groups.
CONCLUSIONS: In conclusion, central fovea, subfoveal choroidal and peripapillary retinal nerve fiber layer thickness were higher in polymerase chain reaction positive COVID-19 patients compared to healthy controls. To understand the pathogenesis of systemic and local changes caused by COVID-19, multicenter and long-term studies with a large number of patient subgroups are necessary.

References

  • 1. Lai CC, Ko WC, Lee PI, Jean SS, Hsueh PR. Extra-respiratory manifestations of COVID-19. Int J Antimicrob Agents. 2020;56(2):106024.
  • 2. Wu P, Duan F, Luo C, et al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province. China, JAMA Ophthalmol. 2020;138 (5):575–8.
  • 3. Khavandi S, Tabibzadeh E, Naderan M, Shoar S. Corona virus disease-19 (COVID-19) presenting as conjunctivitis: atypically high-risk during a pandemic. Cont Lens Anterior Eye. 2020;43(3):211–2.
  • 4. Chen L, Deng C, Chen X, et al. Ocular manifestations and clinical characteristics of 535 cases of COVID-19 in Wuhan, China: a cross-sectional study. Acta Ophthalmol. 2020;10 (1111):14472.
  • 5. Lu CW, Liu XF, Jia ZF. 2019-nCoV transmission through the ocular surface must not be ignored. The Lancet. 2020;395(10224):39.
  • 6. Li JO, Lam DSC, Chen Y, Ting DSW. Novel coronavirus disease 2019 (COVID-19): the importance of recognising possible early ocular manifestation and using protective eyewear. Br J Ophthalmol. 2020;104(3):297– 8.
  • 7. Port AD, Orlin A, Kiss S, et al. Cytomegalovirus retinitis: a review. J Ocul Pharmacol Ther. 2017;33(4):224–34.
  • 8. Agarwal A, Invernizzi A, Acquistapace A. Analysis of retinochoroidal vasculature in human immunodeficiency virus infection using spectral-domain OCT angiography. Ophthalmol Retina. 2017;1(6):545–54.
  • 9. Pirraglia MP, Ceccarelli G, Cerini A, et al. Retinal involvement and ocular findings in COVID-19 pneumonia patients. Sci Rep. 2020;10(1):17419.
  • 10. Gavriilaki E, Brodsky RA. Severe COVID-19 infection and thrombotic microangiopathy: Success does not come easily. Br J Haematol. 2020;189(6): 222–65.
  • 11. Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–8.
  • 12. Invernizzi A, Torre A, Parrulli S. Retinal findings in patients with COVID-19: results from the SERPICO-19 study. E Clinical Medicine. 2020;27(10): 100550.
  • 13. Varga Z, Flammer AJ, Steiger P. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–8.
  • 14. Zago Filho LA, Lima LH, Melo GB, Zett C, Farah ME. Vitritis and outer retinal abnormalities in a patient with COVID-19. Ocul Immunol Inflamm. 2020:1–3.
  • 15. Abrishami M, Daneshvar R, Emamverdian Z, et al. Spectral-domain optical coherence tomography assessment of retinal and choroidal changes in patients with coronavirus disease 2019: a case-control study. J Ophthalmic Inflamm Infect. 2022;18;12(1):18.
  • 16. Burgos-Blasco B, Güemes-Villahoz N, Vidal-Villegas B, et al. Optic nerve and macular optical coherence tomography in recovered COVID-19 patients. Eur J Ophthalmol. 2022;32(1):628-36.
  • 17. Bajka A, Muth DR, Wiest MRJ, et al. Analysis of Optical Coherence Tomography (OCT) and Optical Coherence Tomography Angiography (OCTA) Parameters in Young Adults after SARS-CoV-2 Infection (COVID- 19) Compared with Healthy Young Controls. Diagnostics (Basel). 2023;28 (13):1283.
  • 18. Dağ Şeker E, Erbahçeci Timur İE. Assessment of early and long-COVID related retinal neurodegeneration with optical coherence tomography. Int Ophthalmol. 2023;43(6):2073-81.
  • 19. Cetinkaya T, Kurt MM, Akpolat C. Analysis of swept-source optical coherence tomography angiography measurement alterations in adult patients recovered from COVID-19. Clin Exp Optom. 2022;105(8):848-52.
  • 20. Kal M, Winiarczyk M, Mackiewicz J, et al. The Effect of Reduced Oxygen Saturation on Retinal Microvascularization in COVID-19 Patients with Bilateral Pneumonia Based on Optical Coherence Tomography Study. J Pers Med. 2022;12(11):1824.
  • 21. Turker IC, Dogan CU, Guven D, Kutucu OK, Gul C. Optical coherence tomography angiography findings in patients with COVID-19. Can J Ophthalmol. 2021;56(2):83-7.
There are 21 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Articles
Authors

Emin Serbülent Güçlü 0000-0003-2112-1162

Ömer Özer 0000-0003-0329-0931

Publication Date April 29, 2024
Acceptance Date October 8, 2023
Published in Issue Year 2024

Cite

APA Güçlü, E. S., & Özer, Ö. (2024). OPTICAL COHERENCE TOMOGRAPHY ANALYSIS OF RETINAL THICKNESS IN COVID-19 PATIENTS. Kocatepe Tıp Dergisi, 25(2), 241-245. https://doi.org/10.18229/kocatepetip.1197468
AMA Güçlü ES, Özer Ö. OPTICAL COHERENCE TOMOGRAPHY ANALYSIS OF RETINAL THICKNESS IN COVID-19 PATIENTS. KTD. April 2024;25(2):241-245. doi:10.18229/kocatepetip.1197468
Chicago Güçlü, Emin Serbülent, and Ömer Özer. “OPTICAL COHERENCE TOMOGRAPHY ANALYSIS OF RETINAL THICKNESS IN COVID-19 PATIENTS”. Kocatepe Tıp Dergisi 25, no. 2 (April 2024): 241-45. https://doi.org/10.18229/kocatepetip.1197468.
EndNote Güçlü ES, Özer Ö (April 1, 2024) OPTICAL COHERENCE TOMOGRAPHY ANALYSIS OF RETINAL THICKNESS IN COVID-19 PATIENTS. Kocatepe Tıp Dergisi 25 2 241–245.
IEEE E. S. Güçlü and Ö. Özer, “OPTICAL COHERENCE TOMOGRAPHY ANALYSIS OF RETINAL THICKNESS IN COVID-19 PATIENTS”, KTD, vol. 25, no. 2, pp. 241–245, 2024, doi: 10.18229/kocatepetip.1197468.
ISNAD Güçlü, Emin Serbülent - Özer, Ömer. “OPTICAL COHERENCE TOMOGRAPHY ANALYSIS OF RETINAL THICKNESS IN COVID-19 PATIENTS”. Kocatepe Tıp Dergisi 25/2 (April 2024), 241-245. https://doi.org/10.18229/kocatepetip.1197468.
JAMA Güçlü ES, Özer Ö. OPTICAL COHERENCE TOMOGRAPHY ANALYSIS OF RETINAL THICKNESS IN COVID-19 PATIENTS. KTD. 2024;25:241–245.
MLA Güçlü, Emin Serbülent and Ömer Özer. “OPTICAL COHERENCE TOMOGRAPHY ANALYSIS OF RETINAL THICKNESS IN COVID-19 PATIENTS”. Kocatepe Tıp Dergisi, vol. 25, no. 2, 2024, pp. 241-5, doi:10.18229/kocatepetip.1197468.
Vancouver Güçlü ES, Özer Ö. OPTICAL COHERENCE TOMOGRAPHY ANALYSIS OF RETINAL THICKNESS IN COVID-19 PATIENTS. KTD. 2024;25(2):241-5.

88x31.png
Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.