Research Article
BibTex RIS Cite

YÜKSEK YAĞLI DİYET / STREPTOZOTOSİN İLE İNDÜKLENEN DİYABETİK FARELERDE METFORMİNİN HEPATORENAL HASARA KARŞI KORUYUCU ETKİLERİ

Year 2022, Volume: 23 Issue: 3, 244 - 251, 18.07.2022
https://doi.org/10.18229/kocatepetip.840797

Abstract

AMAÇ: Sunulan bu çalışmada yüksek yağlı diyet ve streptozotosin ile deneysel tip 2 diyabet oluşturulan farelerde metformin tedavisinin karaciğer ve böbrek dokularında antioksidan etkisinin araştırılması amaçlandı.
GEREÇ VE YÖNTEM: Yirmi bir adet yetişkin (11-12 haftalık 15-18 g) C57BL6 erkek fare rastgele üç gruba ayrıldı; Kontrol grubu (K), Diyabet grubu (D), ve Diyabet+Metformin tedavi grubu (D+MTF). D ve D+MTF grupları 4 hafta süreyle yağ oranı %60 olan yüksek yağlı diyetle beslendi. 4. Haftanın sonunda 30 mg/kg tek doz streptozotosin intraperitoneal uygulanarak tip 2 diyabet oluşturuldu. Metformin 300 mg/kg/gün dozunda gavaj ile verildi. Deney sonunda alınan karaciğer ve böbrek örneklerinde; glutatyon (GSH), katalaz (KAT) ve malondialdehit (MDA) düzeyleri spektrofotometrik yöntemle ölçüldü. Hemotoksilen ve Eozin ile boyanan doku kesitleri histomorfolojik olarak değerlendirildi.
BULGULAR: Çalışma sonuçları diyabetik hayvanların karaciğer ve böbrek dokularında MDA düzeylerinin arttığını gösterdi. Metformin tedavisinin her iki dokuda da MDA düzeylerini azaltıp, GSH ve KAT düzeylerini artırdığı ancak bu artışın karaciğerde anlamlı düzeyde olmadığı (p>0,05), böbrekte ise anlamlı düzeyde olduğu bulundu (p<0,05). Ayrıca Histopatolojik değerlendirme sonuçlarında D+MTF grubunda nadir alanlarda vakuolizasyon, yer yer nekroz ve sinozoidal tıkanıklık görülürken, D grubu karaciğerlerinde yoğun vakuolizasyon, yüksek oranda sinozoidal tıkanıklık ve nekroz görüldü. Böbrek dokusunda K grubunda tübüler yapının normal yapıda olduğu; D grubunda, tübüllerin genişlediği ve yoğun kanama alanlarının olduğu; D+MTF grubunda ise nadir alanlarda tübül yapılarında vakuollerin olduğu görüldü.
SONUÇ: Bu çalışmanın sonuçları, Diyabette dokularda oksidatif stresin oluştuğunu, metformin tedavisinin diyabette artan oksidatif stres üzerinde düzeltici etki göstererek dokularda hasar oluşmasını engellediğini göstermektedir.

References

  • 1. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. The Lancet. 2017; 389(10085): 2239-51.
  • 2. Kemerci G, Elçioğlu HK. Diyabet ve hipertansiyonda kullanılan takviye edici gıdalar. Marmara Pharmaceutical Journal. 2017;(21):10-18.
  • 3. Hamamcıoglu AC. Diyabette Oksidatif Stres ve Antioksidanların Rolü. Türkiye Diyabet ve Obezite Dergisi. 2017;1(1):7-13.
  • 4. Çetiner Ö, Rakıcıoğlu N. Hiperglisemi, Oksidatif Stres ve Tip 2 Diyabette Oksidatif Stres Belirteçlerinin Tanımlanması. Türk Diyab Obez. 2020; 4(1):60-68.
  • 5. Song Y, Huang L, Yu J. Effects of blueberry anthocyanins on retinal oxidative stress and inflammation in diabetes through Nrf2/HO-1 signaling. Journal of Neuroimmunology. 2016;(301):1-6.
  • 6. Esteghamati A, Eskandari D, Mirmiranpour H, et al. Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: a randomized clinical trial. Clinical Nutrition. 2013;32(2):179-185.
  • 7. Taheri N, Azarmi Y, Neshat M, Garjani A, Doustar Y. Study the effects of metformin on renal function and structure after unilateral ischemia-reperfusion in rat. Research in Pharmaceutical Sciences. 2012;7(5):77.
  • 8. Silvares RR, da Silva Pereira ENG, Flores EIE, et al. High-fat diet-induced kidney alterations in rats with metabolic syndrome: Endothelial dysfunction and decreased antioxidant defense Diabetes Metab Syndr Obes. 2019;(12): 1773-1781.
  • 9. Zhang S, Xu H, Yu X, Yu W, Sui D. Metformin ameliorates diabetic nephropathy in a rat model of low-dose streptozotocin-induced diabetes. Experimental and therapeutic Medicine. 2017;14(1):383-390.
  • 10. Albasher G, Alwahaibi M, Abdel-Daim MM, et al. Protective effects of Artemisia judaica extract compared to metformin against hepatorenal injury in high-fat diet/streptozotocine-induced diabetic rats. Environmental Science and Pollution Research. 2020;27(32):40525-40536.
  • 11. Suzuki S, Toledo-Pereyra LH, Rodriguez F J, et al. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. Transplantation. 1993;55(6):1265-1272.
  • 12. Irmak MK, Koltuksuz U, Kutlu NO, et al. The effect of caffeic acid phenethyl ester on ischemia-reperfusion injury in comparison with α-tocopherol in rat kidneys. Urological Research. 2001;29(3):190-193.
  • 13. Kalyoncu Ş, Yilmaz B, Demir M, et al. Melatonin attenuates ovarian ischemia reperfusion injury in rats by decreasing oxidative stress index and peroxynitrite. Turkish Journal of Medical Sciences. 2020;50(6):1513-1522.
  • 14. Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 1951;193:265-275.
  • 15. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302-310.
  • 16. Beutler E. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882-888.
  • 17. Iwase T, Tajima A, Sugimoto S, et al. A simple assay for measuring catalase activity: a visual approach. Scientific Reports. 2013;3(1):1-4.
  • 18. Tümer G, Çolak G. Tip 2 diabetes mellitusda tıbbi beslenme tedavisi. Journal of Experimental and Clinical Medicine. 2012;29(1s):12-15.
  • 19. Jump DB. Fatty acid regulation of hepatic lipid metabolism. Current opinion in Clinical Nutrition and Metabolic Care. 2011;14(2):115-120.
  • 20. Jornayvaz FR, Jurczak MJ, Lee HY, et al. A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain. American Journal of Physiology-Endocrinology and Metabolism. 2010;299(5):808-815.
  • 21. Tripathy S, Torres-Gonzalez M, Jump DB. Elevated hepatic fatty acid elongase-5 activity corrects dietary fat-induced hyperglycemia in obese BL/6J mice. Journal of Lipid Research. 2010;51(9):2642-2654.
  • 22. Yates MS, Coletta AM, Zhang Q, et al. Prospective randomized biomarker study of metformin and lifestyle intervention for prevention in obese women at increased risk for endometrial cancer. Cancer Prevention Research. 2018;11(8):477-490.
  • 23. Wang YW, He SJ, Feng X, et al. Metformin: a review of its potential indications. Drug design, Development and Therapy. 2017;11:2421-2429.
  • 24. Mohamed J, Nafizah AN, Zariyantey AH, et al. Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. Sultan Qaboos University Medical Journal. 2016;16(2): 132–141.
  • 25. Nna VU, Abu Bakar AB, Ahmad A, et al. Oxidative stress, NF-κb-mediated inflammation and apoptosis in the testes of streptozotocin–induced diabetic rats: Combined protective effects of malaysian propolis and metformin. Antioxidants. 2019;8(10):465.
  • 26. Yazdi HB, Hojati V, Shiravi A, et al. Liver Dysfunction and Oxidative Stress in Streptozotocin-Induced Diabetic Rats: Protective Role of Artemisia Turanica. Journal of Pharmacopuncture. 2019;22(2):109-114.
  • 27. Doğanay S, Trabzon Ş, Bahtiyar N , ark. Streptozotosin ile İndüklenmiş Diyabetik Sıçanlarda Melatoninin Antioksidan Aktivitesi; Kan ve Karaciğer Dokusunda. Sakarya Tıp Dergisi. 2020;10(4):608-614.
  • 28. Nabi SA, Kasetti RB, Sirasanagandla S, et al. Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats. BMC complementary and alternative medicine. 2013;18(2):13-37.
  • 29. Wang X, He H, Liang LB, et al. The Preliminary Investigation of GLP-1 Receptor Agonist on Liver Steatosis in Obese Mice. Journal of Sichuan University. Medical Science Edition. 2017;48(1):28-32.
  • 30. Gopal V, Mandal V, Tangjang S, et al.Serum Biochemical, Histopathology and SEM Analyses of the Effects of the Indian Traditional Herb Wattakaka Volubilis Leaf Extract on Wistar Male Rats. Journal of Pharmacopuncture. 2014;17(1):13-19.
  • 31. Al‐Hashem F, Al‐Humayed S, Amin SN, et al. Metformin inhibits mTOR–HIF‐1α axis and profibrogenic and inflammatory biomarkers in thioacetamide‐induced hepatic tissue alterations. Journal of Cellular Physiology. 2019;234(6):9328-9337.

PROTECTIVE EFFECTS OF METFORMIN AGAINST HEPATORENAL INJURY IN HIGH-FAT DIET/STREPTOZOTOCINE-INDUCED DIABETIC MICE

Year 2022, Volume: 23 Issue: 3, 244 - 251, 18.07.2022
https://doi.org/10.18229/kocatepetip.840797

Abstract

OBJECTIVE: In this study, it was aimed to investigate the antioxidant effect of metformin treatment on liver and kidney tissues in mice with experimental type 2 diabetes induced by a high-fat diet and streptozotocin.
MATERIAL AND METHODS: Twenty-one adult C57BL6 male mice were randomly divided into three groups as Control group (C), Diabetes group (D), and Diabetes + Metformin group (D + MTF). Groups D and D + MTF were fed a high-fat diet with 60% fat for four weeks. After the 4th week, 30 mg/kg streptozotocin was applied intraperitoneally, and type 2 diabetes was induced. 300 mg/kg/day Metformin was given by gavage. Glutathione (GSH), catalase (CAT) and malondialdehyde (MDA) levels in liver and kidney samples were measured by spectrophotometric method. Tissue sections were stained with Hematoxylin and Eosin and evaluated histomorphologically.
RESULTS: The results showed that MDA levels increased in the liver and kidney tissues of diabetic animals. It was found that MTF treatment decreased MDA levels in both tissues and increased GSH and CAT levels, but this increase was not significant in the liver (p> 0.05), while it was significant in the kidney (p <0.05). In addition, in the histopathological evaluation results, vacuolization, occasional necrosis and synozoid occlusion were observed in rare areas in the D+MTF group, while intense vacuolization, high rates of synozoidal occlusion and necrosis were observed in group D livers. In kidney tissue, the tubular structure in the group C was normal while the tubules were enlarged in group D, and there were dense bleeding areas. In the D+MTF group, vacuoles were observed in the tubule structures in rare areas.
CONCLUSIONS: The results of this study show that oxidative stress occurs in tissues in diabetes and that metformin treatment prevents tissue damage by showing a corrective effect on the increased oxidative stress in diabetes.

References

  • 1. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. The Lancet. 2017; 389(10085): 2239-51.
  • 2. Kemerci G, Elçioğlu HK. Diyabet ve hipertansiyonda kullanılan takviye edici gıdalar. Marmara Pharmaceutical Journal. 2017;(21):10-18.
  • 3. Hamamcıoglu AC. Diyabette Oksidatif Stres ve Antioksidanların Rolü. Türkiye Diyabet ve Obezite Dergisi. 2017;1(1):7-13.
  • 4. Çetiner Ö, Rakıcıoğlu N. Hiperglisemi, Oksidatif Stres ve Tip 2 Diyabette Oksidatif Stres Belirteçlerinin Tanımlanması. Türk Diyab Obez. 2020; 4(1):60-68.
  • 5. Song Y, Huang L, Yu J. Effects of blueberry anthocyanins on retinal oxidative stress and inflammation in diabetes through Nrf2/HO-1 signaling. Journal of Neuroimmunology. 2016;(301):1-6.
  • 6. Esteghamati A, Eskandari D, Mirmiranpour H, et al. Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: a randomized clinical trial. Clinical Nutrition. 2013;32(2):179-185.
  • 7. Taheri N, Azarmi Y, Neshat M, Garjani A, Doustar Y. Study the effects of metformin on renal function and structure after unilateral ischemia-reperfusion in rat. Research in Pharmaceutical Sciences. 2012;7(5):77.
  • 8. Silvares RR, da Silva Pereira ENG, Flores EIE, et al. High-fat diet-induced kidney alterations in rats with metabolic syndrome: Endothelial dysfunction and decreased antioxidant defense Diabetes Metab Syndr Obes. 2019;(12): 1773-1781.
  • 9. Zhang S, Xu H, Yu X, Yu W, Sui D. Metformin ameliorates diabetic nephropathy in a rat model of low-dose streptozotocin-induced diabetes. Experimental and therapeutic Medicine. 2017;14(1):383-390.
  • 10. Albasher G, Alwahaibi M, Abdel-Daim MM, et al. Protective effects of Artemisia judaica extract compared to metformin against hepatorenal injury in high-fat diet/streptozotocine-induced diabetic rats. Environmental Science and Pollution Research. 2020;27(32):40525-40536.
  • 11. Suzuki S, Toledo-Pereyra LH, Rodriguez F J, et al. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. Transplantation. 1993;55(6):1265-1272.
  • 12. Irmak MK, Koltuksuz U, Kutlu NO, et al. The effect of caffeic acid phenethyl ester on ischemia-reperfusion injury in comparison with α-tocopherol in rat kidneys. Urological Research. 2001;29(3):190-193.
  • 13. Kalyoncu Ş, Yilmaz B, Demir M, et al. Melatonin attenuates ovarian ischemia reperfusion injury in rats by decreasing oxidative stress index and peroxynitrite. Turkish Journal of Medical Sciences. 2020;50(6):1513-1522.
  • 14. Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 1951;193:265-275.
  • 15. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302-310.
  • 16. Beutler E. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882-888.
  • 17. Iwase T, Tajima A, Sugimoto S, et al. A simple assay for measuring catalase activity: a visual approach. Scientific Reports. 2013;3(1):1-4.
  • 18. Tümer G, Çolak G. Tip 2 diabetes mellitusda tıbbi beslenme tedavisi. Journal of Experimental and Clinical Medicine. 2012;29(1s):12-15.
  • 19. Jump DB. Fatty acid regulation of hepatic lipid metabolism. Current opinion in Clinical Nutrition and Metabolic Care. 2011;14(2):115-120.
  • 20. Jornayvaz FR, Jurczak MJ, Lee HY, et al. A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain. American Journal of Physiology-Endocrinology and Metabolism. 2010;299(5):808-815.
  • 21. Tripathy S, Torres-Gonzalez M, Jump DB. Elevated hepatic fatty acid elongase-5 activity corrects dietary fat-induced hyperglycemia in obese BL/6J mice. Journal of Lipid Research. 2010;51(9):2642-2654.
  • 22. Yates MS, Coletta AM, Zhang Q, et al. Prospective randomized biomarker study of metformin and lifestyle intervention for prevention in obese women at increased risk for endometrial cancer. Cancer Prevention Research. 2018;11(8):477-490.
  • 23. Wang YW, He SJ, Feng X, et al. Metformin: a review of its potential indications. Drug design, Development and Therapy. 2017;11:2421-2429.
  • 24. Mohamed J, Nafizah AN, Zariyantey AH, et al. Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. Sultan Qaboos University Medical Journal. 2016;16(2): 132–141.
  • 25. Nna VU, Abu Bakar AB, Ahmad A, et al. Oxidative stress, NF-κb-mediated inflammation and apoptosis in the testes of streptozotocin–induced diabetic rats: Combined protective effects of malaysian propolis and metformin. Antioxidants. 2019;8(10):465.
  • 26. Yazdi HB, Hojati V, Shiravi A, et al. Liver Dysfunction and Oxidative Stress in Streptozotocin-Induced Diabetic Rats: Protective Role of Artemisia Turanica. Journal of Pharmacopuncture. 2019;22(2):109-114.
  • 27. Doğanay S, Trabzon Ş, Bahtiyar N , ark. Streptozotosin ile İndüklenmiş Diyabetik Sıçanlarda Melatoninin Antioksidan Aktivitesi; Kan ve Karaciğer Dokusunda. Sakarya Tıp Dergisi. 2020;10(4):608-614.
  • 28. Nabi SA, Kasetti RB, Sirasanagandla S, et al. Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats. BMC complementary and alternative medicine. 2013;18(2):13-37.
  • 29. Wang X, He H, Liang LB, et al. The Preliminary Investigation of GLP-1 Receptor Agonist on Liver Steatosis in Obese Mice. Journal of Sichuan University. Medical Science Edition. 2017;48(1):28-32.
  • 30. Gopal V, Mandal V, Tangjang S, et al.Serum Biochemical, Histopathology and SEM Analyses of the Effects of the Indian Traditional Herb Wattakaka Volubilis Leaf Extract on Wistar Male Rats. Journal of Pharmacopuncture. 2014;17(1):13-19.
  • 31. Al‐Hashem F, Al‐Humayed S, Amin SN, et al. Metformin inhibits mTOR–HIF‐1α axis and profibrogenic and inflammatory biomarkers in thioacetamide‐induced hepatic tissue alterations. Journal of Cellular Physiology. 2019;234(6):9328-9337.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Articles
Authors

Songül Doğanay 0000-0002-1730-1331

Özcan Budak 0000-0002-2617-3175

Nurten Bahtiyar 0000-0003-2420-8415

Veysel Toprak 0000-0002-3280-851X

Publication Date July 18, 2022
Acceptance Date August 6, 2021
Published in Issue Year 2022 Volume: 23 Issue: 3

Cite

APA Doğanay, S., Budak, Ö., Bahtiyar, N., Toprak, V. (2022). YÜKSEK YAĞLI DİYET / STREPTOZOTOSİN İLE İNDÜKLENEN DİYABETİK FARELERDE METFORMİNİN HEPATORENAL HASARA KARŞI KORUYUCU ETKİLERİ. Kocatepe Tıp Dergisi, 23(3), 244-251. https://doi.org/10.18229/kocatepetip.840797
AMA Doğanay S, Budak Ö, Bahtiyar N, Toprak V. YÜKSEK YAĞLI DİYET / STREPTOZOTOSİN İLE İNDÜKLENEN DİYABETİK FARELERDE METFORMİNİN HEPATORENAL HASARA KARŞI KORUYUCU ETKİLERİ. KTD. July 2022;23(3):244-251. doi:10.18229/kocatepetip.840797
Chicago Doğanay, Songül, Özcan Budak, Nurten Bahtiyar, and Veysel Toprak. “YÜKSEK YAĞLI DİYET / STREPTOZOTOSİN İLE İNDÜKLENEN DİYABETİK FARELERDE METFORMİNİN HEPATORENAL HASARA KARŞI KORUYUCU ETKİLERİ”. Kocatepe Tıp Dergisi 23, no. 3 (July 2022): 244-51. https://doi.org/10.18229/kocatepetip.840797.
EndNote Doğanay S, Budak Ö, Bahtiyar N, Toprak V (July 1, 2022) YÜKSEK YAĞLI DİYET / STREPTOZOTOSİN İLE İNDÜKLENEN DİYABETİK FARELERDE METFORMİNİN HEPATORENAL HASARA KARŞI KORUYUCU ETKİLERİ. Kocatepe Tıp Dergisi 23 3 244–251.
IEEE S. Doğanay, Ö. Budak, N. Bahtiyar, and V. Toprak, “YÜKSEK YAĞLI DİYET / STREPTOZOTOSİN İLE İNDÜKLENEN DİYABETİK FARELERDE METFORMİNİN HEPATORENAL HASARA KARŞI KORUYUCU ETKİLERİ”, KTD, vol. 23, no. 3, pp. 244–251, 2022, doi: 10.18229/kocatepetip.840797.
ISNAD Doğanay, Songül et al. “YÜKSEK YAĞLI DİYET / STREPTOZOTOSİN İLE İNDÜKLENEN DİYABETİK FARELERDE METFORMİNİN HEPATORENAL HASARA KARŞI KORUYUCU ETKİLERİ”. Kocatepe Tıp Dergisi 23/3 (July 2022), 244-251. https://doi.org/10.18229/kocatepetip.840797.
JAMA Doğanay S, Budak Ö, Bahtiyar N, Toprak V. YÜKSEK YAĞLI DİYET / STREPTOZOTOSİN İLE İNDÜKLENEN DİYABETİK FARELERDE METFORMİNİN HEPATORENAL HASARA KARŞI KORUYUCU ETKİLERİ. KTD. 2022;23:244–251.
MLA Doğanay, Songül et al. “YÜKSEK YAĞLI DİYET / STREPTOZOTOSİN İLE İNDÜKLENEN DİYABETİK FARELERDE METFORMİNİN HEPATORENAL HASARA KARŞI KORUYUCU ETKİLERİ”. Kocatepe Tıp Dergisi, vol. 23, no. 3, 2022, pp. 244-51, doi:10.18229/kocatepetip.840797.
Vancouver Doğanay S, Budak Ö, Bahtiyar N, Toprak V. YÜKSEK YAĞLI DİYET / STREPTOZOTOSİN İLE İNDÜKLENEN DİYABETİK FARELERDE METFORMİNİN HEPATORENAL HASARA KARŞI KORUYUCU ETKİLERİ. KTD. 2022;23(3):244-51.

88x31.png
Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.