Research Article
BibTex RIS Cite

ARI EKMEĞİNİN ALZHEİMER SIÇAN MODELİNDE KARACİĞER 5HT2B ARACILI GLUKOZ DÜZENLEMESİ ÜZERİNE ETKİSİ

Year 2024, Volume: 25 Issue: 4, 466 - 475, 21.10.2024
https://doi.org/10.18229/kocatepetip.1433727

Abstract

AMAÇ: Bu çalışmada Alzheimer hastalığının (AH) sıçan mo-delinde arı ekmeğinin insülin, serotonin (5-hidroksitriptamin, 5-HT) ve leptin hormonlarında meydana getireceği değişimin glukoz regülasyonu ve kilo değişimi üzerindeki etkisinin ince-lenmesi amaçlanmıştır.GEREÇ VE YÖNTEM: Alzheimer hastalığı sıçan modeli, lateral ventriküllere intraserebroventriküler (i.c.v.) Streptozotosin (STZ) enjeksiyonu yoluyla oluşturuldu. Arı ekmeği uygulaması, STZ enjeksiyonundan sonra 3 hafta boyunca oral gavaj ile gerçek-leştirildi. Plazmada leptin, insülin, 5-HT düzeyleri ile karaciğer dokusunda leptin, insülin, 5-HT, 5HT reseptör 2B (5HT2B), glu-koz taşıyıcı 2 (GLUT2), glukoz 6-fosfataz (G6paz) düzeyleri Elisa kit ile ölçüldü. Açlık kan glukoz düzeyleri glukometre kullanıla-rak ölçüldü ve İnsülin Direnci İçin Homeostatik Model Değer-lendirmesi (HOMA-IR) düzeyleri formül kullanılarak hesaplandı. Her bir sıçanın ağırlık değişimi, başlangıç ağırlıklarının son ağır-lıklarından çıkarılmasıyla hesaplandı. BULGULAR: AH grubunda bulunan sıçanların açlık kan glukoz, plazma insülin ve HOMA-IR düzeyleri ile karaciğer 5-HT, plazma 5-HT ve leptin düzeylerinin azaldığı, karaciğer 5-HT2B ve GLUT-2 düzeyleri ile kilo kaybının arttığı görüldü. Arı ekmeği teda-visinin bu hayvanlarda karaciğer 5-HT2B, G6paz düzeyleri ve plazma leptin düzeylerini önemli ölçüde artırdığı, ayrıca plazma 5-HT, karaciğer 5-HT ve GLUT-2 düzeyleri ile kilo kaybını belirgin şekilde artırdığı görüldü. Ayrıca arı ekmeğinin plazma insülin düzeyini etkilemeden açlık kan glukoz düzeylerini azalttığı sap-tandı. SONUÇ: Bu sonuçlar, AH grubundaki sıçanların karaciğer doku-sunda glukoz metabolizmasının anti-diyabetik savunma siste-mi oluşturacak şekilde modüle edildiğini gösterdi. Arı ekmeği uygulamasının Alzheimer oluşturulmuş sıçanlarda leptin aracılı insülin duyarlılığını artırarak açlık kan glukoz düzeylerini azalt-tığı saptandı.

Ethical Statement

ID/Protokol 1619/2023.08.005

Supporting Institution

Kapadokya Üniversitesi

Project Number

KÜN.2023-BAGP-027

References

  • 1. Rice DM, Buchsbaum MS, Starr A, et al. Abnormal EEG slow activity in left temporal areas in senile dementia of the Alzheimer type. J Gerontol. 1990;45(4):145-51.
  • 2. Park S, Kim DS, Kang S, et al. The combination of luteolin and l-theanine improved Alzheimer's disease-like symptoms by potentiating hippocampal insulin signaling and decreasing neuroinflammation and norepinephrine degradation in amyloid-beta-infused rats. Nutr Res. 2018;60:116-31.
  • 3. Bassendine MF, Taylor-Robinson SD, Fertleman M, et al. Is Alzheimer's Disease a Liver Disease of the Brain? J Alzheimers Dis. 2020;75(1):1-14.
  • 4. Nguyen TT, Ta QTH, Nguyen TKO, et al. Type 3 Diabetes and Its Role Implications in Alzheimer's Disease. Int J Mol Sci. 2020;21(9):3165.
  • 5. Acun AD, Kantar D, Er H, ve ark. Investigation of Cyclo-Z Therapeutic Effect on Insulin Pathway in Alzheimer's Rat Model: Biochemical and Electrophysiological Parameters. Mol Neurobiol. 2023; 60(7):4030-48.
  • 6. Himmerich H, Treasure J. Psychopharmacological advances in eating disorders. Expert Rev Clin Pharmacol. 2018;11(1):95-108.
  • 7. Nonogaki K. The Regulatory Role of the Central and Peripheral Serotonin Network on Feeding Signals in Metabolic Diseases. Int J Mol Sci. 2022;23(3):1600.
  • 8. Donovan MH, Tecott LH. Serotonin and the regulation of mammalian energy balance. Front Neurosci. 2013;7:36.
  • 9. Choi W, Moon JH, Kim H. Serotonergic regulation of energy metabolism in peripheral tissues. J Endocrinol. 2020;245(1):1-10.
  • 10. D'Souza A M, Neumann UH, Glavas MM, et al. The glucoregulatory actions of leptin. Mol Metab. 2017;6(9):1052-65.
  • 11. McGuire MJ, Ishii M. Leptin Dysfunction and Alzheimer's Disease: Evidence from Cellular, Animal, and Human Studies. Cell Mol Neurobiol. 2016;36(2):203-17.
  • 12. Muck-Seler D, Presecki P, Mimica N, et al. Platelet serotonin concentration and monoamine oxidase type B activity in female patients in early, middle, and late phase of Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(7):1226-31.
  • 13. Doganyigit Z, Yakan B, Soylu M, ve ark. Histological, immunohistochemical and biochemical effects of bee bread on stomach tissue of obese rats. Bratisl Lek Listy. 2020;121(7):504-11.
  • 14. Bakour M, El Menyiy N, El Ghouizi A, et al. Hypoglycemic, the hypolipidemic and hepato-protective effect of bee bread in streptozotocin-induced diabetic rats. Avicenna J Phytomed. 2021;11(4):343-52.
  • 15. Moreira-Silva D, Vizin RCL, Martins TMS, et al. Intracerebral Injection of Streptozotocin to Model Alzheimer Disease in Rats. Bio Protoc. 2019;9(20):3397.
  • 16. Kolaylı S, Keskin M. Natural bee products and their apitherapeutic applications. Studies in Natural Products Chemistry 2020; 66: 175-96.
  • 17. Bayram NE, Gercek YC, Çelik S, et al.. Phenolic and Free Amino Acid Profiles of Bee Bread and Bee Pollen with the Same Botanical Origin-Similarities and Differences. Arab. J. Chem. 2021;14:103004.
  • 18. Yang S, Chen Z, Cao M, et al. Pioglitazone ameliorates Abeta42 deposition in rats with diet-induced insulin resistance associated with AKT/GSK3beta activation. Mol Med Rep. 2017;15(5):2588-94.
  • 19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
  • 20. Kshirsagar V, Thingore C, Juvekar A. Insulin resistance: a connecting link between Alzheimer's disease and metabolic disorder. Metab Brain Dis. 2021;36(1):67-83.
  • 21. Banks WA, Jaspan JB, Kastin AJ. Effect of diabetes mellitus on the permeability of the blood-brain barrier to insulin. Peptides. 1997;18(10):1577-84.
  • 22. Griffith CM, Eid T, Rose GM, et al. Evidence for altered insulin receptor signaling in Alzheimer's disease. Neuropharmacology. 2018;136:202-15.
  • 23. Rivera EJ, Goldin A, Fulmer N, et al. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease: link to brain reductions in acetylcholine. J Alzheimers Dis. 2005;8(3):247-68.
  • 24. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005;365(9467):1333-46.
  • 25. González-González JG, Violante-Cumpa JR, Zambrano-Lucio M, et al. HOMA-IR as a predictor of Health Outcomes in Patients with Metabolic Risk Factors: A Systematic Review and Meta-analysis. High Blood Press Car. 2022;29(6):547-64.
  • 26. Sampath Kumar A, Maiya AG, Shastry BA, et al. Exercise and insulin resistance in type 2 diabetes mellitus: A systematic review and meta-analysis. Ann Phys Rehabil Med. 2019;62(2):98-103.
  • 27. Bondar A, Shabelnikova O. Clinical features and complication rates in type 2 diabetes mellitus clusters on five variables: glycated hemoglobin, age at diagnosis, body mass index, HOMA-IR, HOMA-B. Probl Endokrinol (Mosk). 2023;11;69(5):84-92.
  • 28. Arvanitakis Z, Wilson RS, Bienias JL, et al. Diabetes mellitus and risk of Alzheimer's disease and decline in cognitive function. Arch Neurol. 2004;61(5):661-6.
  • 29. Paulose CS, Dakshinamurti K. Effect of pyridoxine deficiency in young rats on high-affinity serotonin and dopamine receptors. J Neurosci Res. 1985;14(2):263-70.
  • 30. Chakraborty S, Lennon JC, Malkaram SA, et al. Serotonergic system, cognition, and BPSD in Alzheimer's disease. Neurosci Lett. 2019;704:36-44.
  • 31. Chadt A, Al-Hasani H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch. 2020;472(9):1273-1298.
  • 32. Gibbs ME, Hutchinson D, Hertz L. Astrocytic involvement in learning and memory consolidation. Neurosci Biobehav Rev. 2008;32(5):927-44.
  • 33. Tajeddinn W, Fereshtehnejad SM, Seed Ahmed M, et al. Association of Platelet Serotonin Levels in Alzheimer's Disease with Clinical and Cerebrospinal Fluid Markers. J Alzheimers Dis. 2016;53(2):621-30.
  • 34. Kaluzna-Czaplinska J, Gatarek P, Chirumbolo S, et al. How important is tryptophan in human health? Crit Rev Food Sci Nutr. 2019;59(1):72-88.
  • 35. Wyler SC, Lord CC, Lee S, et al. Serotonergic Control of Metabolic Homeostasis. Front Cell Neurosci. 2017;11:277.
  • 36. Tubio RI, Perez-Maceira J, Aldegunde M. Homeostasis of glucose in the rainbow trout (Oncorhynchus mykiss Walbaum): the role of serotonin. J Exp Biol. 2010;213(11):1813-21.
  • 37. Perez-Maceira JJ, Mancebo MJ, Aldegunde M. Serotonin-induced brain glycogenolysis in rainbow trout (Oncorhynchus mykiss). J Exp Biol. 2012;215(17):2969-79.
  • 38. Lee CY, Yau SM, Liau CS, et al. Serotonergic regulation of blood glucose levels in the crayfish, Site of action and receptor characterization. J Exp Zool. 2000;286(6):596-605.
  • 39. Denroche HC, Levi J, Wideman RD, et al. Leptin therapy reverses hyperglycemia in mice with streptozotocin-induced diabetes, independent of hepatic leptin signaling. Diabetes. 2011;60(5):1414-23.
  • 40. Fujikawa T, Chuang JC, Sakata I, et al. Leptin therapy improves insulin-deficient type 1 diabetes by CNS- dependent mechanisms in mice. Proc Natl Acad Sci U S A. 2010;107(40):17391-6.
  • 41. Maioli S, Lodeiro M, Merino-Serrais P, et al. Alterations in brain leptin signalling in spite of unchanged CSF leptin levels in Alzheimer's disease. Aging Cell. 2015;14(1):122-9.
  • 42. Ishii M, Wang G, Racchumi G, et al. Transgenic mice overexpressing amyloid precursor protein exhibit early metabolic deficits and a pathologically low leptin state associated with hypothalamic dysfunction in arcuate neuropeptide Y neurons. J Neurosci. 2014;34(27):9096-106.
  • 43. Fewlass DC, Noboa K, Pi-Sunyer FX, et al. Obesity-related leptin regulates Alzheimer's Abeta. FASEB J. 2004;18(15):1870-8.
  • 44. Greco M, Chiefari E, Montalcini T, et al. Early effects of a hypocaloric, Mediterranean diet on laboratory parameters in obese individuals. Mediators Inflamm. 2014;2014:750860.
  • 45. Marwarha G, Dasari B, Prabhakara JPR, et al. β-Amyloid regulates leptin expression and tau phosphorylation through the mTORC1 signaling pathway. Journal of Neurochemistry. 2010;115(2):373-84.
  • 46. Balaha M, De Filippis B, Cataldi A, et al. CAPE and Neuroprotection: A Review. Biomolecules. 2021;11(2):176.
  • 47. Nisa N, Rasmita B, Arati C, et al. Repurposing of phyto-ligand molecules from the honey bee products for Alzheimer's disease as novel inhibitors of BACE-1: small molecule bioinformatics strategies as amyloid-based therapy. Environ Sci Pollut R. 2023;30(17):51143-69.
  • 48. Shahinozzaman M, Taira N, Ishii T, et al. Anti-Inflammatory, Anti-Diabetic, and Anti-Alzheimer's Effects of Prenylated Flavonoids from Okinawa Propolis: An Investigation by Experimental and Computational Studies. Molecules. 2018;23(10): 2479.

EFFECT OF BEE BREAD ON LIVER 5HT2B-MEDIATED GLUCOSE REGULATION IN ALZHEIMER'S RAT MODEL

Year 2024, Volume: 25 Issue: 4, 466 - 475, 21.10.2024
https://doi.org/10.18229/kocatepetip.1433727

Abstract

OBJECTIVE: This study aimed to examine the effect of bee bread on glucose regulation and weight change through the change of insulin, serotonin (5-hydroxytryptamine, 5-HT), and leptin hormones in the rat model of Alzheimer's disease (AD).
MATERIAL AND METHODS: Alzheimer's disease rat model created via intracerebroventricular (i.c.v.) Streptozotocin (STZ) injection into the lateral ventricles. Beebread administration was performed with daily gavage for three weeks after the STZ injection. Leptin, İnsulin, 5-HT levels in plasma and leptin, insulin, 5-HT, 5HT receptor 2B (5HT2B), glucose transporter 2 (GLUT2),glucose 6-phosphatase (G6pase) levels in liver tissue were measured with Elisa kit. Fasting blood glucose levels were measured using a glucometer, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) levels were calculated using the formula. Each rat's weight change was calculated by subtractingtheir initial weight from their final weight.
RESULTS: In the AD-created rats, ıt was observed that blood glucose, plasma insulin, and HOMA-IR levels, liver 5-HT, plasma 5-HT, and leptin levels decreased, liver 5-HT2B and GLUT-2, and weight loss increased. In the AD-created rats, bee bread treatment significantly increased liver 5-HT2B, liver G6pase levels,and plasma leptin levels, also markedly increased plasma 5-HT,liver 5-HT, GLUT-2, and weight loss levels, and decreased fasting blood glucose levels without affecting plasma insülin levels inthe AD group.
CONCLUSIONS: These results showed that glucose metabolism was modulated to generate an anti-diabetic defense system in the liver tissue of AD-created rats. Beebread administration reduced fasting blood glucose levels by increasing leptin-mediated insulin sensitivity in the AD-created rats.

Project Number

KÜN.2023-BAGP-027

References

  • 1. Rice DM, Buchsbaum MS, Starr A, et al. Abnormal EEG slow activity in left temporal areas in senile dementia of the Alzheimer type. J Gerontol. 1990;45(4):145-51.
  • 2. Park S, Kim DS, Kang S, et al. The combination of luteolin and l-theanine improved Alzheimer's disease-like symptoms by potentiating hippocampal insulin signaling and decreasing neuroinflammation and norepinephrine degradation in amyloid-beta-infused rats. Nutr Res. 2018;60:116-31.
  • 3. Bassendine MF, Taylor-Robinson SD, Fertleman M, et al. Is Alzheimer's Disease a Liver Disease of the Brain? J Alzheimers Dis. 2020;75(1):1-14.
  • 4. Nguyen TT, Ta QTH, Nguyen TKO, et al. Type 3 Diabetes and Its Role Implications in Alzheimer's Disease. Int J Mol Sci. 2020;21(9):3165.
  • 5. Acun AD, Kantar D, Er H, ve ark. Investigation of Cyclo-Z Therapeutic Effect on Insulin Pathway in Alzheimer's Rat Model: Biochemical and Electrophysiological Parameters. Mol Neurobiol. 2023; 60(7):4030-48.
  • 6. Himmerich H, Treasure J. Psychopharmacological advances in eating disorders. Expert Rev Clin Pharmacol. 2018;11(1):95-108.
  • 7. Nonogaki K. The Regulatory Role of the Central and Peripheral Serotonin Network on Feeding Signals in Metabolic Diseases. Int J Mol Sci. 2022;23(3):1600.
  • 8. Donovan MH, Tecott LH. Serotonin and the regulation of mammalian energy balance. Front Neurosci. 2013;7:36.
  • 9. Choi W, Moon JH, Kim H. Serotonergic regulation of energy metabolism in peripheral tissues. J Endocrinol. 2020;245(1):1-10.
  • 10. D'Souza A M, Neumann UH, Glavas MM, et al. The glucoregulatory actions of leptin. Mol Metab. 2017;6(9):1052-65.
  • 11. McGuire MJ, Ishii M. Leptin Dysfunction and Alzheimer's Disease: Evidence from Cellular, Animal, and Human Studies. Cell Mol Neurobiol. 2016;36(2):203-17.
  • 12. Muck-Seler D, Presecki P, Mimica N, et al. Platelet serotonin concentration and monoamine oxidase type B activity in female patients in early, middle, and late phase of Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(7):1226-31.
  • 13. Doganyigit Z, Yakan B, Soylu M, ve ark. Histological, immunohistochemical and biochemical effects of bee bread on stomach tissue of obese rats. Bratisl Lek Listy. 2020;121(7):504-11.
  • 14. Bakour M, El Menyiy N, El Ghouizi A, et al. Hypoglycemic, the hypolipidemic and hepato-protective effect of bee bread in streptozotocin-induced diabetic rats. Avicenna J Phytomed. 2021;11(4):343-52.
  • 15. Moreira-Silva D, Vizin RCL, Martins TMS, et al. Intracerebral Injection of Streptozotocin to Model Alzheimer Disease in Rats. Bio Protoc. 2019;9(20):3397.
  • 16. Kolaylı S, Keskin M. Natural bee products and their apitherapeutic applications. Studies in Natural Products Chemistry 2020; 66: 175-96.
  • 17. Bayram NE, Gercek YC, Çelik S, et al.. Phenolic and Free Amino Acid Profiles of Bee Bread and Bee Pollen with the Same Botanical Origin-Similarities and Differences. Arab. J. Chem. 2021;14:103004.
  • 18. Yang S, Chen Z, Cao M, et al. Pioglitazone ameliorates Abeta42 deposition in rats with diet-induced insulin resistance associated with AKT/GSK3beta activation. Mol Med Rep. 2017;15(5):2588-94.
  • 19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
  • 20. Kshirsagar V, Thingore C, Juvekar A. Insulin resistance: a connecting link between Alzheimer's disease and metabolic disorder. Metab Brain Dis. 2021;36(1):67-83.
  • 21. Banks WA, Jaspan JB, Kastin AJ. Effect of diabetes mellitus on the permeability of the blood-brain barrier to insulin. Peptides. 1997;18(10):1577-84.
  • 22. Griffith CM, Eid T, Rose GM, et al. Evidence for altered insulin receptor signaling in Alzheimer's disease. Neuropharmacology. 2018;136:202-15.
  • 23. Rivera EJ, Goldin A, Fulmer N, et al. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease: link to brain reductions in acetylcholine. J Alzheimers Dis. 2005;8(3):247-68.
  • 24. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005;365(9467):1333-46.
  • 25. González-González JG, Violante-Cumpa JR, Zambrano-Lucio M, et al. HOMA-IR as a predictor of Health Outcomes in Patients with Metabolic Risk Factors: A Systematic Review and Meta-analysis. High Blood Press Car. 2022;29(6):547-64.
  • 26. Sampath Kumar A, Maiya AG, Shastry BA, et al. Exercise and insulin resistance in type 2 diabetes mellitus: A systematic review and meta-analysis. Ann Phys Rehabil Med. 2019;62(2):98-103.
  • 27. Bondar A, Shabelnikova O. Clinical features and complication rates in type 2 diabetes mellitus clusters on five variables: glycated hemoglobin, age at diagnosis, body mass index, HOMA-IR, HOMA-B. Probl Endokrinol (Mosk). 2023;11;69(5):84-92.
  • 28. Arvanitakis Z, Wilson RS, Bienias JL, et al. Diabetes mellitus and risk of Alzheimer's disease and decline in cognitive function. Arch Neurol. 2004;61(5):661-6.
  • 29. Paulose CS, Dakshinamurti K. Effect of pyridoxine deficiency in young rats on high-affinity serotonin and dopamine receptors. J Neurosci Res. 1985;14(2):263-70.
  • 30. Chakraborty S, Lennon JC, Malkaram SA, et al. Serotonergic system, cognition, and BPSD in Alzheimer's disease. Neurosci Lett. 2019;704:36-44.
  • 31. Chadt A, Al-Hasani H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch. 2020;472(9):1273-1298.
  • 32. Gibbs ME, Hutchinson D, Hertz L. Astrocytic involvement in learning and memory consolidation. Neurosci Biobehav Rev. 2008;32(5):927-44.
  • 33. Tajeddinn W, Fereshtehnejad SM, Seed Ahmed M, et al. Association of Platelet Serotonin Levels in Alzheimer's Disease with Clinical and Cerebrospinal Fluid Markers. J Alzheimers Dis. 2016;53(2):621-30.
  • 34. Kaluzna-Czaplinska J, Gatarek P, Chirumbolo S, et al. How important is tryptophan in human health? Crit Rev Food Sci Nutr. 2019;59(1):72-88.
  • 35. Wyler SC, Lord CC, Lee S, et al. Serotonergic Control of Metabolic Homeostasis. Front Cell Neurosci. 2017;11:277.
  • 36. Tubio RI, Perez-Maceira J, Aldegunde M. Homeostasis of glucose in the rainbow trout (Oncorhynchus mykiss Walbaum): the role of serotonin. J Exp Biol. 2010;213(11):1813-21.
  • 37. Perez-Maceira JJ, Mancebo MJ, Aldegunde M. Serotonin-induced brain glycogenolysis in rainbow trout (Oncorhynchus mykiss). J Exp Biol. 2012;215(17):2969-79.
  • 38. Lee CY, Yau SM, Liau CS, et al. Serotonergic regulation of blood glucose levels in the crayfish, Site of action and receptor characterization. J Exp Zool. 2000;286(6):596-605.
  • 39. Denroche HC, Levi J, Wideman RD, et al. Leptin therapy reverses hyperglycemia in mice with streptozotocin-induced diabetes, independent of hepatic leptin signaling. Diabetes. 2011;60(5):1414-23.
  • 40. Fujikawa T, Chuang JC, Sakata I, et al. Leptin therapy improves insulin-deficient type 1 diabetes by CNS- dependent mechanisms in mice. Proc Natl Acad Sci U S A. 2010;107(40):17391-6.
  • 41. Maioli S, Lodeiro M, Merino-Serrais P, et al. Alterations in brain leptin signalling in spite of unchanged CSF leptin levels in Alzheimer's disease. Aging Cell. 2015;14(1):122-9.
  • 42. Ishii M, Wang G, Racchumi G, et al. Transgenic mice overexpressing amyloid precursor protein exhibit early metabolic deficits and a pathologically low leptin state associated with hypothalamic dysfunction in arcuate neuropeptide Y neurons. J Neurosci. 2014;34(27):9096-106.
  • 43. Fewlass DC, Noboa K, Pi-Sunyer FX, et al. Obesity-related leptin regulates Alzheimer's Abeta. FASEB J. 2004;18(15):1870-8.
  • 44. Greco M, Chiefari E, Montalcini T, et al. Early effects of a hypocaloric, Mediterranean diet on laboratory parameters in obese individuals. Mediators Inflamm. 2014;2014:750860.
  • 45. Marwarha G, Dasari B, Prabhakara JPR, et al. β-Amyloid regulates leptin expression and tau phosphorylation through the mTORC1 signaling pathway. Journal of Neurochemistry. 2010;115(2):373-84.
  • 46. Balaha M, De Filippis B, Cataldi A, et al. CAPE and Neuroprotection: A Review. Biomolecules. 2021;11(2):176.
  • 47. Nisa N, Rasmita B, Arati C, et al. Repurposing of phyto-ligand molecules from the honey bee products for Alzheimer's disease as novel inhibitors of BACE-1: small molecule bioinformatics strategies as amyloid-based therapy. Environ Sci Pollut R. 2023;30(17):51143-69.
  • 48. Shahinozzaman M, Taira N, Ishii T, et al. Anti-Inflammatory, Anti-Diabetic, and Anti-Alzheimer's Effects of Prenylated Flavonoids from Okinawa Propolis: An Investigation by Experimental and Computational Studies. Molecules. 2018;23(10): 2479.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Cell Metabolism, Cellular Interactions
Journal Section Articles
Authors

Ebru Afşar 0000-0002-7817-855X

Kadirhan Doğan 0000-0002-0249-1435

Deniz Kantar Gül 0000-0003-3037-2553

Alev Duygu Kuzzu 0000-0003-1240-6342

Project Number KÜN.2023-BAGP-027
Publication Date October 21, 2024
Submission Date February 9, 2024
Acceptance Date June 3, 2024
Published in Issue Year 2024 Volume: 25 Issue: 4

Cite

APA Afşar, E., Doğan, K., Kantar Gül, D., Kuzzu, A. D. (2024). ARI EKMEĞİNİN ALZHEİMER SIÇAN MODELİNDE KARACİĞER 5HT2B ARACILI GLUKOZ DÜZENLEMESİ ÜZERİNE ETKİSİ. Kocatepe Tıp Dergisi, 25(4), 466-475. https://doi.org/10.18229/kocatepetip.1433727
AMA Afşar E, Doğan K, Kantar Gül D, Kuzzu AD. ARI EKMEĞİNİN ALZHEİMER SIÇAN MODELİNDE KARACİĞER 5HT2B ARACILI GLUKOZ DÜZENLEMESİ ÜZERİNE ETKİSİ. KTD. October 2024;25(4):466-475. doi:10.18229/kocatepetip.1433727
Chicago Afşar, Ebru, Kadirhan Doğan, Deniz Kantar Gül, and Alev Duygu Kuzzu. “ARI EKMEĞİNİN ALZHEİMER SIÇAN MODELİNDE KARACİĞER 5HT2B ARACILI GLUKOZ DÜZENLEMESİ ÜZERİNE ETKİSİ”. Kocatepe Tıp Dergisi 25, no. 4 (October 2024): 466-75. https://doi.org/10.18229/kocatepetip.1433727.
EndNote Afşar E, Doğan K, Kantar Gül D, Kuzzu AD (October 1, 2024) ARI EKMEĞİNİN ALZHEİMER SIÇAN MODELİNDE KARACİĞER 5HT2B ARACILI GLUKOZ DÜZENLEMESİ ÜZERİNE ETKİSİ. Kocatepe Tıp Dergisi 25 4 466–475.
IEEE E. Afşar, K. Doğan, D. Kantar Gül, and A. D. Kuzzu, “ARI EKMEĞİNİN ALZHEİMER SIÇAN MODELİNDE KARACİĞER 5HT2B ARACILI GLUKOZ DÜZENLEMESİ ÜZERİNE ETKİSİ”, KTD, vol. 25, no. 4, pp. 466–475, 2024, doi: 10.18229/kocatepetip.1433727.
ISNAD Afşar, Ebru et al. “ARI EKMEĞİNİN ALZHEİMER SIÇAN MODELİNDE KARACİĞER 5HT2B ARACILI GLUKOZ DÜZENLEMESİ ÜZERİNE ETKİSİ”. Kocatepe Tıp Dergisi 25/4 (October 2024), 466-475. https://doi.org/10.18229/kocatepetip.1433727.
JAMA Afşar E, Doğan K, Kantar Gül D, Kuzzu AD. ARI EKMEĞİNİN ALZHEİMER SIÇAN MODELİNDE KARACİĞER 5HT2B ARACILI GLUKOZ DÜZENLEMESİ ÜZERİNE ETKİSİ. KTD. 2024;25:466–475.
MLA Afşar, Ebru et al. “ARI EKMEĞİNİN ALZHEİMER SIÇAN MODELİNDE KARACİĞER 5HT2B ARACILI GLUKOZ DÜZENLEMESİ ÜZERİNE ETKİSİ”. Kocatepe Tıp Dergisi, vol. 25, no. 4, 2024, pp. 466-75, doi:10.18229/kocatepetip.1433727.
Vancouver Afşar E, Doğan K, Kantar Gül D, Kuzzu AD. ARI EKMEĞİNİN ALZHEİMER SIÇAN MODELİNDE KARACİĞER 5HT2B ARACILI GLUKOZ DÜZENLEMESİ ÜZERİNE ETKİSİ. KTD. 2024;25(4):466-75.

88x31.png
Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.