Research Article
BibTex RIS Cite

THERAPEUTIC EFFICACY OF MYRTUS COMMUNIS IN SCIATIC NERVE INJURY: AN EXPERIMENTAL RESEARCH IN RATS

Year 2024, Volume: 25 Issue: 4, 525 - 535, 21.10.2024
https://doi.org/10.18229/kocatepetip.1520464

Abstract

OBJECTIVE: Nerve injuries, often resulting from various causes, pose serious health issues that typically require prolonged rehabilitation. Conventional methods used in the treatment of these injuries are often inadequate, necessitating the exploration of new treatment approaches. Research on the effects of plant-derived active compounds on nerve regeneration may offer potential new treatment options. In this context, this study investigating the effects of Myrtus communis on nerve regeneration aims to fill an important gap in the field of nerve injury treatment.
MATERIAL AND METHODS: In this study, the efficacy of Myrtus communis was evaluated in an experimental sciatic nerve injury model. Thirty-two female Wistar Albino rats were divided into four groups: Control, Sham, Group I, and Group II. Sciatic nerve injury was induced, and Myrtus communis treatment was administered via gastric lavage. The animals' motor functions, sensory functions, electrophysiological measurements, biochemical parameters, and histopathological evaluations were examined.
RESULTS: The results demonstrated that Myrtus communis contributed to rapid improvement in sciatic functional index (SFI) values. Similarly, positive effects were observed in sensory assessment and electrophysiological measurements. Biochemical analyses indicated that Myrtus communis increased antioxidant capacity and reduced oxidative stress. Histopathological examinations revealed less axon degeneration, edema, and vacuolization in the groups treated with Myrtus communis.
CONCLUSIONS: This study concludes that Myrtus communis could be used as a potential therapeutic agent in the treatment of sciatic nerve injury. These findings suggest that Myrtus communis may play a supportive role in post-nerve injury recovery. However, it should be noted that further research is needed before these results can be translated into clinical applications.

Project Number

21.Genel.016

References

  • 1. Hewson DW, Bedforth NM, Hardman JG. Peripheral nerve injury arising in anaesthesia practice. Anaesthesia 2018;73:51–60.
  • 2. Li R, Liu Z, Pan Y, et al. Peripheral Nerve Injuries Treatment: a Systematic Review. Cell Biochem Biophys 2014;68:449–54.
  • 3. Evans GR. Challenges to nerve regeneration. Semin Surg Oncol. 2000;19(3):312-8.
  • 4. Benga A, Zor F, Korkmaz A, et al. The neurochemistry of peripheral nerve regeneration. Indian Journal of Plastic Surgery. 2017;50:5–15.
  • 5. Hussain G, Wang J, Rasul A, et al. Current Status of Therapeutic Approaches against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. Int J Biol Sci 2020;16:116–34.
  • 6. Carvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Front Bioeng Biotechnol. 2019;7:337.
  • 7. Martinez de Albornoz P, Delgado PJ, et al. Non-surgical therapies for peripheral nerve injury. Br Med Bull 2011;100:73–100.
  • 8. Novak CB, von der Heyde RL. Evidence and Techniques in Rehabilitation Following Nerve Injuries. Hand Clin. 2013;29:383–92.
  • 9. Pabari A, Lloyd-Hughes H, Seifalian AM, et al. Nerve Conduits for Peripheral Nerve Surgery. Plast Reconstr Surg. 2014;133:1420–30.
  • 10. Chan KM, Gordon T, Zochodne DW, et al. Improving peripheral nerve regeneration: From molecular mechanisms to potential therapeutic targets. Exp Neurol 2014;261:826–35.
  • 11. Snyder AK, Fox IK, Nichols CM, et al. Neuroregenerative Effects of Preinjury FK-506 Administration. Plast Reconstr Surg. 2006;118:360–7.
  • 12. Gordon T. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans. Neurotherapeutics. 2016;13:295–310.
  • 13. Şahin G, Altuntaş E, Polatcı H. Mersin (Myrtuscommunis L.) Mevyesinin Fiziksel, Mekanik, Renk ve Kimyasal Özellikleri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi. 2020;23:59–68.
  • 14. Mahboubi M. Myrtus communis L. and its application in treatment of Recurrent Aphthous Stomatitis. J Ethnopharmacol. 2016;193:481–9.
  • 15. Messaoud C, Boussaid M. Myrtus communis Berry Color Morphs: A Comparative Analysis of Essential Oils, Fatty Acids, Phenolic Compounds, and Antioxidant Activities. Chem Biodivers. 2011;8:300–10.
  • 16. Hayder N, Abdelwahed A, Kilani S, et al. Anti-genotoxic and free-radical scavenging activities of extracts from (Tunisian) Myrtus communis. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2004;564:89–95.
  • 17. Sepici-Dincel A, Açıkgöz Ş, Çevik C, et al. Effects of in vivo antioxidant enzyme activities of myrtle oil in normoglycaemic and alloxan diabetic rabbits. J Ethnopharmacol. 2007;110:498–503.
  • 18. Miguel MG. Antioxidant and Anti-Inflammatory Activities of Essential Oils: A Short Review. Molecules. 2010;15:9252–87.
  • 19. Mimica-Dukić N, Bugarin D, Grbović S, et al. Essential Oil of Myrtus communis L. as a Potential Antioxidant and Antimutagenic Agents. Molecules. 2010;15:2759–70.
  • 20. Tumen I, Senol FS, Orhan IE. Inhibitory potential of the leaves and berries of Myrtus communis L. (myrtle) against enzymes linked to neurodegenerative diseases and their antioxidant actions. Int J Food Sci Nutr. 2012;63:387–92.
  • 21. de Medinaceli L, Freed WJ, Wyatt RJ. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol. 1982;77:634–43.
  • 22. Bain JR, Mackinnon SE, Hunter DA. Functional Evaluation of Complete Sciatic, Peroneal, and Posterior Tibial Nerve Lesions in the Rat. Plast Reconstr Surg 1989;83:129–36.
  • 23. Luna LG. Manual of histologic staining methods of the armed forces institute of pathology. McGrow-Hill book company, 1968.
  • 24. Bagdatoglu C, Saray A, Surucu HS, et al. Effect of trapidil in ischemia/reperfusion injury of peripheral nerves. Neurosurgery. 2002 ;51(1):212-9; discussion 219-20.
  • 25. Gordon T, Chan KM, Sulaiman OAR, et al. Acceleratıng Axon Growth to Overcome Lımıtatıons ın Functıonal Recovery After Perıpheral Nerve Injury. Neurosurgery. 2009;65:A132–44.
  • 26. Griffin JW, Hogan M V., Chhabra AB, et al. Peripheral Nerve Repair and Reconstruction. J Bone Joint Surg. 2013;95:2144–51.
  • 27. Nagappan PG, Chen H, Wang D-Y. Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury. Mil Med Res.2020;7:30.
  • 28. Lundborg G. A 25-year perspective of peripheral nerve surgery: Evolving neuroscientific concepts and clinical significance. J Hand Surg Am.2000;25:391–414.
  • 29.Oliveira ALR. Apoptosis of sensory neurons and satellite cells after sciatic nerve transection in C57BL/6J mice. Brazilian Journal of Medical and Biological Research. 2001;34:375–80.
  • 30. Naik AK, Tandan SK, Dudhgaonkar SP, et al. Role of oxidative stress in pathophysiology of peripheral neuropathy and modulation by N‐acetyl‐L‐cysteine in rats. European Journal of Pain. 2006;10:573–79.
  • 31. Nadeau S, Filali M, Zhang J, et al. Functional recovery after peripheral nerve injury is dependent on the pro- inflammatory cytokines IL-1β and TNF: implications for neuropathic pain. The Journal of Neuroscience. 2011;31:12533–42.
  • 32. Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation. 2011;8:109.
  • 33. Coban YK, Ciralik H, Kurutas EB. Ischemic preconditioning reduces the severity of ischemia-reperfusion injury of peripheral nerve in rats. J Brachial Plex Peripher Nerve Inj. 2006;1:2.
  • 34. Al-Bishri A, Dahlin L, Sunzel B, et al. Systemic Betamethasone Accelerates Functional Recovery After a Crush Injury to Rat Sciatic Nerve. Journal of Oral and Maxillofacial Surgery. 2005;63:973–7.
  • 35. Lee M, Doolabh VB, Mackinnon SE, et al. FK506 promotes functional recovery in crushed rat sciatic nerve. Muscle Nerve. 2000;23:633–40.
  • 36. Subbanna P, Prasanna C, Gunale B, et al. Acetyl salicylic acid augments functional recovery following sciatic nerve crush in mice. J Brachial Plex Peripher Nerve Inj. 2014;02:e91–4.
  • 37. Alipour G, Dashti S, Hosseinzadeh H. Review of Pharmacological Effects of Myrtus communis L. and its Active Constituents. Phytotherapy Research. 2014;28:1125–36.
  • 38. Özcan MM, Uyar B, Ünver A. Antibacterial effect of myrtle (Myrtus communis L.) leaves extract on microorganisms. Archiv Für Lebensmittelhygiene. 2015;66:18–21.
  • 39. Chalchat JC, Fıgueredo G, Özcan MM, et al. Effect of Hydrodistillation and Microwave Distillation Extraction Methods on Chemical Compositions of Essential Oil of Pickling Herb And Myrtle Plants. South Western Journal of Horticulture, Biology and Environment. 2010;1:133–41.
  • 40. Viana AFSC, Lopes MTP, Oliveira FTB, et al. (−)-Myrtenol accelerates healing of acetic acid-induced gastric ulcers in rats and in human gastric adenocarcinoma cells. Eur J Pharmacol. 2019;854:139–48.
  • 41. Ogur R. Studies with Myrtus communis L.: anticancer properties. J Intercult Ethnopharmacol. 2014;3:135.
  • 42. Mok S-A, Lund K, Campenot RB. A retrograde apoptotic signal originating in NGF-deprived distal axons of rat sympathetic neurons in compartmented cultures. Cell Res. 2009;19:546–60.
  • 43. Heumann R, Korsching S, Bandtlow C, et al. Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J Cell Biol. 1987;104:1623–31.
  • 44. Li R, Li D, Wu C, et al. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics. 2020;10:1649–77.
  • 45. Kubiczkova L, Sedlarikova L, Hajek R, et al. TGF-β – an excellent servant but a bad master. J Transl Med. 2012;10:183.

RATLARDA SİYATİK SİNİR YARALANMASINDA MYRTUS COMMUNIS'İN TERAPÖTİK ETKİNLİĞİ: BİR DENEYSEL ARAŞTIRMA

Year 2024, Volume: 25 Issue: 4, 525 - 535, 21.10.2024
https://doi.org/10.18229/kocatepetip.1520464

Abstract

AMAÇ: Sinir yaralanmaları, genellikle çeşitli nedenlerden kaynaklanan ciddi sağlık sorunları olup, genellikle uzun süreli rehabilitasyon gerektirir. Bu yaralanmaların tedavisinde kullanılan geleneksel yöntemler çoğunlukla yetersiz kalmakta ve yeni tedavi yaklaşımlarının araştırılmasını gerektirmektedir. Bitkisel kökenli aktif bileşiklerin sinir rejenerasyonu üzerindeki etkileri üzerine yapılan araştırmalar, potansiyel yeni tedavi seçenekleri sunabilir. Bu bağlamda, Myrtus communis'in sinir rejenerasyonu üzerindeki etkilerini araştıran bu çalışma, sinir yaralanması tedavisi alanında önemli bir boşluğu doldurmayı amaçlamaktadır.
GEREÇ VE YÖNTEM: Bu çalışmada, Myrtus communis'in etkinliği deneysel siyatik sinir yaralanması modelinde değerlendirildi. Otuz iki dişi Wistar Albino sıçan dört gruba ayrıldı: Kontrol, Sham, Grup I ve Grup II. Siyatik sinir yaralanması indüklendi ve Myrtus communis tedavisi gastrik lavaj yoluyla uygulandı. Hayvanların motor fonksiyonları, duyusal fonksiyonları, elektrofizyolojik ölçümleri, biyokimyasal parametreleri ve histopatolojik değerlendirmeleri incelendi.
BULGULAR: Myrtus communis'in siyatik fonksiyonel indeks (SFI) değerlerinde hızlı iyileşmeye katkıda bulunduğunu gösterdi. Benzer şekilde, duyusal değerlendirme ve elektrofizyolojik ölçümlerde de olumlu etkiler gözlendi. Biyokimyasal analizler, Myrtus communis'in antioksidan kapasiteyi artırdığını ve oksidatif stresi azalttığını gösterdi. Histopatolojik incelemeler, Myrtus communis ile tedavi edilen gruplarda daha az akson dejenerasyonu, ödem ve vakuolizasyon olduğunu ortaya koydu.
SONUÇ: Bu çalışma, Myrtus communis'in siyatik sinir yaralanmasının tedavisinde potansiyel bir terapötik ajan olarak kullanılabileceğini sonucuna varmıştır. Bu bulgular, Myrtus communis'in sinir yaralanması sonrası iyileşme sürecinde destekleyici bir rol oynayabileceğini düşündürmektedir. Bununla birlikte, bu sonuçların klinik uygulamalara dönüştürülebilmesi için daha fazla araştırmaya ihtiyaç olduğu unutulmamalıdır.

Ethical Statement

The Local Ethics Committee for Animal Experiments of Afyon Kocatepe University, Afyonkarahisar, Turkey, approved the study protocol (Issue No: 49533702/04, Date: 20/01/2023).

Supporting Institution

This study was supported by Afyonkarahisar Health Sciences University Scientific Research Projects Coordination Unit with the project number 21.GENEL.016.

Project Number

21.Genel.016

Thanks

None

References

  • 1. Hewson DW, Bedforth NM, Hardman JG. Peripheral nerve injury arising in anaesthesia practice. Anaesthesia 2018;73:51–60.
  • 2. Li R, Liu Z, Pan Y, et al. Peripheral Nerve Injuries Treatment: a Systematic Review. Cell Biochem Biophys 2014;68:449–54.
  • 3. Evans GR. Challenges to nerve regeneration. Semin Surg Oncol. 2000;19(3):312-8.
  • 4. Benga A, Zor F, Korkmaz A, et al. The neurochemistry of peripheral nerve regeneration. Indian Journal of Plastic Surgery. 2017;50:5–15.
  • 5. Hussain G, Wang J, Rasul A, et al. Current Status of Therapeutic Approaches against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. Int J Biol Sci 2020;16:116–34.
  • 6. Carvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Front Bioeng Biotechnol. 2019;7:337.
  • 7. Martinez de Albornoz P, Delgado PJ, et al. Non-surgical therapies for peripheral nerve injury. Br Med Bull 2011;100:73–100.
  • 8. Novak CB, von der Heyde RL. Evidence and Techniques in Rehabilitation Following Nerve Injuries. Hand Clin. 2013;29:383–92.
  • 9. Pabari A, Lloyd-Hughes H, Seifalian AM, et al. Nerve Conduits for Peripheral Nerve Surgery. Plast Reconstr Surg. 2014;133:1420–30.
  • 10. Chan KM, Gordon T, Zochodne DW, et al. Improving peripheral nerve regeneration: From molecular mechanisms to potential therapeutic targets. Exp Neurol 2014;261:826–35.
  • 11. Snyder AK, Fox IK, Nichols CM, et al. Neuroregenerative Effects of Preinjury FK-506 Administration. Plast Reconstr Surg. 2006;118:360–7.
  • 12. Gordon T. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans. Neurotherapeutics. 2016;13:295–310.
  • 13. Şahin G, Altuntaş E, Polatcı H. Mersin (Myrtuscommunis L.) Mevyesinin Fiziksel, Mekanik, Renk ve Kimyasal Özellikleri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi. 2020;23:59–68.
  • 14. Mahboubi M. Myrtus communis L. and its application in treatment of Recurrent Aphthous Stomatitis. J Ethnopharmacol. 2016;193:481–9.
  • 15. Messaoud C, Boussaid M. Myrtus communis Berry Color Morphs: A Comparative Analysis of Essential Oils, Fatty Acids, Phenolic Compounds, and Antioxidant Activities. Chem Biodivers. 2011;8:300–10.
  • 16. Hayder N, Abdelwahed A, Kilani S, et al. Anti-genotoxic and free-radical scavenging activities of extracts from (Tunisian) Myrtus communis. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2004;564:89–95.
  • 17. Sepici-Dincel A, Açıkgöz Ş, Çevik C, et al. Effects of in vivo antioxidant enzyme activities of myrtle oil in normoglycaemic and alloxan diabetic rabbits. J Ethnopharmacol. 2007;110:498–503.
  • 18. Miguel MG. Antioxidant and Anti-Inflammatory Activities of Essential Oils: A Short Review. Molecules. 2010;15:9252–87.
  • 19. Mimica-Dukić N, Bugarin D, Grbović S, et al. Essential Oil of Myrtus communis L. as a Potential Antioxidant and Antimutagenic Agents. Molecules. 2010;15:2759–70.
  • 20. Tumen I, Senol FS, Orhan IE. Inhibitory potential of the leaves and berries of Myrtus communis L. (myrtle) against enzymes linked to neurodegenerative diseases and their antioxidant actions. Int J Food Sci Nutr. 2012;63:387–92.
  • 21. de Medinaceli L, Freed WJ, Wyatt RJ. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol. 1982;77:634–43.
  • 22. Bain JR, Mackinnon SE, Hunter DA. Functional Evaluation of Complete Sciatic, Peroneal, and Posterior Tibial Nerve Lesions in the Rat. Plast Reconstr Surg 1989;83:129–36.
  • 23. Luna LG. Manual of histologic staining methods of the armed forces institute of pathology. McGrow-Hill book company, 1968.
  • 24. Bagdatoglu C, Saray A, Surucu HS, et al. Effect of trapidil in ischemia/reperfusion injury of peripheral nerves. Neurosurgery. 2002 ;51(1):212-9; discussion 219-20.
  • 25. Gordon T, Chan KM, Sulaiman OAR, et al. Acceleratıng Axon Growth to Overcome Lımıtatıons ın Functıonal Recovery After Perıpheral Nerve Injury. Neurosurgery. 2009;65:A132–44.
  • 26. Griffin JW, Hogan M V., Chhabra AB, et al. Peripheral Nerve Repair and Reconstruction. J Bone Joint Surg. 2013;95:2144–51.
  • 27. Nagappan PG, Chen H, Wang D-Y. Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury. Mil Med Res.2020;7:30.
  • 28. Lundborg G. A 25-year perspective of peripheral nerve surgery: Evolving neuroscientific concepts and clinical significance. J Hand Surg Am.2000;25:391–414.
  • 29.Oliveira ALR. Apoptosis of sensory neurons and satellite cells after sciatic nerve transection in C57BL/6J mice. Brazilian Journal of Medical and Biological Research. 2001;34:375–80.
  • 30. Naik AK, Tandan SK, Dudhgaonkar SP, et al. Role of oxidative stress in pathophysiology of peripheral neuropathy and modulation by N‐acetyl‐L‐cysteine in rats. European Journal of Pain. 2006;10:573–79.
  • 31. Nadeau S, Filali M, Zhang J, et al. Functional recovery after peripheral nerve injury is dependent on the pro- inflammatory cytokines IL-1β and TNF: implications for neuropathic pain. The Journal of Neuroscience. 2011;31:12533–42.
  • 32. Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation. 2011;8:109.
  • 33. Coban YK, Ciralik H, Kurutas EB. Ischemic preconditioning reduces the severity of ischemia-reperfusion injury of peripheral nerve in rats. J Brachial Plex Peripher Nerve Inj. 2006;1:2.
  • 34. Al-Bishri A, Dahlin L, Sunzel B, et al. Systemic Betamethasone Accelerates Functional Recovery After a Crush Injury to Rat Sciatic Nerve. Journal of Oral and Maxillofacial Surgery. 2005;63:973–7.
  • 35. Lee M, Doolabh VB, Mackinnon SE, et al. FK506 promotes functional recovery in crushed rat sciatic nerve. Muscle Nerve. 2000;23:633–40.
  • 36. Subbanna P, Prasanna C, Gunale B, et al. Acetyl salicylic acid augments functional recovery following sciatic nerve crush in mice. J Brachial Plex Peripher Nerve Inj. 2014;02:e91–4.
  • 37. Alipour G, Dashti S, Hosseinzadeh H. Review of Pharmacological Effects of Myrtus communis L. and its Active Constituents. Phytotherapy Research. 2014;28:1125–36.
  • 38. Özcan MM, Uyar B, Ünver A. Antibacterial effect of myrtle (Myrtus communis L.) leaves extract on microorganisms. Archiv Für Lebensmittelhygiene. 2015;66:18–21.
  • 39. Chalchat JC, Fıgueredo G, Özcan MM, et al. Effect of Hydrodistillation and Microwave Distillation Extraction Methods on Chemical Compositions of Essential Oil of Pickling Herb And Myrtle Plants. South Western Journal of Horticulture, Biology and Environment. 2010;1:133–41.
  • 40. Viana AFSC, Lopes MTP, Oliveira FTB, et al. (−)-Myrtenol accelerates healing of acetic acid-induced gastric ulcers in rats and in human gastric adenocarcinoma cells. Eur J Pharmacol. 2019;854:139–48.
  • 41. Ogur R. Studies with Myrtus communis L.: anticancer properties. J Intercult Ethnopharmacol. 2014;3:135.
  • 42. Mok S-A, Lund K, Campenot RB. A retrograde apoptotic signal originating in NGF-deprived distal axons of rat sympathetic neurons in compartmented cultures. Cell Res. 2009;19:546–60.
  • 43. Heumann R, Korsching S, Bandtlow C, et al. Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J Cell Biol. 1987;104:1623–31.
  • 44. Li R, Li D, Wu C, et al. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics. 2020;10:1649–77.
  • 45. Kubiczkova L, Sedlarikova L, Hajek R, et al. TGF-β – an excellent servant but a bad master. J Transl Med. 2012;10:183.
There are 45 citations in total.

Details

Primary Language English
Subjects Neurology and Neuromuscular Diseases
Journal Section Articles
Authors

Gökçe Zeytin Demiral 0000-0002-9635-5804

Zülfükar Sarıtaş 0000-0002-7659-6635

Ülkü Türk Börü 0000-0002-0094-5624

Fatma Görücü Özbek 0000-0001-7630-0788

Cansu Köseoğlu Toksoy 0000-0002-9224-9203

Aziz Bülbül 0000-0003-0995-3986

Hasan Hüseyin Demirel 0000-0002-4795-2266

Yusuf Koç 0000-0002-6342-5466

Zehra Yasar Tekmanoglulari 0000-0002-9030-5478

Project Number 21.Genel.016
Publication Date October 21, 2024
Submission Date July 22, 2024
Acceptance Date September 16, 2024
Published in Issue Year 2024 Volume: 25 Issue: 4

Cite

APA Zeytin Demiral, G., Sarıtaş, Z., Türk Börü, Ü., Görücü Özbek, F., et al. (2024). THERAPEUTIC EFFICACY OF MYRTUS COMMUNIS IN SCIATIC NERVE INJURY: AN EXPERIMENTAL RESEARCH IN RATS. Kocatepe Tıp Dergisi, 25(4), 525-535. https://doi.org/10.18229/kocatepetip.1520464
AMA Zeytin Demiral G, Sarıtaş Z, Türk Börü Ü, Görücü Özbek F, Köseoğlu Toksoy C, Bülbül A, Demirel HH, Koç Y, Yasar Tekmanoglulari Z. THERAPEUTIC EFFICACY OF MYRTUS COMMUNIS IN SCIATIC NERVE INJURY: AN EXPERIMENTAL RESEARCH IN RATS. KTD. October 2024;25(4):525-535. doi:10.18229/kocatepetip.1520464
Chicago Zeytin Demiral, Gökçe, Zülfükar Sarıtaş, Ülkü Türk Börü, Fatma Görücü Özbek, Cansu Köseoğlu Toksoy, Aziz Bülbül, Hasan Hüseyin Demirel, Yusuf Koç, and Zehra Yasar Tekmanoglulari. “THERAPEUTIC EFFICACY OF MYRTUS COMMUNIS IN SCIATIC NERVE INJURY: AN EXPERIMENTAL RESEARCH IN RATS”. Kocatepe Tıp Dergisi 25, no. 4 (October 2024): 525-35. https://doi.org/10.18229/kocatepetip.1520464.
EndNote Zeytin Demiral G, Sarıtaş Z, Türk Börü Ü, Görücü Özbek F, Köseoğlu Toksoy C, Bülbül A, Demirel HH, Koç Y, Yasar Tekmanoglulari Z (October 1, 2024) THERAPEUTIC EFFICACY OF MYRTUS COMMUNIS IN SCIATIC NERVE INJURY: AN EXPERIMENTAL RESEARCH IN RATS. Kocatepe Tıp Dergisi 25 4 525–535.
IEEE G. Zeytin Demiral, Z. Sarıtaş, Ü. Türk Börü, F. Görücü Özbek, C. Köseoğlu Toksoy, A. Bülbül, H. H. Demirel, Y. Koç, and Z. Yasar Tekmanoglulari, “THERAPEUTIC EFFICACY OF MYRTUS COMMUNIS IN SCIATIC NERVE INJURY: AN EXPERIMENTAL RESEARCH IN RATS”, KTD, vol. 25, no. 4, pp. 525–535, 2024, doi: 10.18229/kocatepetip.1520464.
ISNAD Zeytin Demiral, Gökçe et al. “THERAPEUTIC EFFICACY OF MYRTUS COMMUNIS IN SCIATIC NERVE INJURY: AN EXPERIMENTAL RESEARCH IN RATS”. Kocatepe Tıp Dergisi 25/4 (October 2024), 525-535. https://doi.org/10.18229/kocatepetip.1520464.
JAMA Zeytin Demiral G, Sarıtaş Z, Türk Börü Ü, Görücü Özbek F, Köseoğlu Toksoy C, Bülbül A, Demirel HH, Koç Y, Yasar Tekmanoglulari Z. THERAPEUTIC EFFICACY OF MYRTUS COMMUNIS IN SCIATIC NERVE INJURY: AN EXPERIMENTAL RESEARCH IN RATS. KTD. 2024;25:525–535.
MLA Zeytin Demiral, Gökçe et al. “THERAPEUTIC EFFICACY OF MYRTUS COMMUNIS IN SCIATIC NERVE INJURY: AN EXPERIMENTAL RESEARCH IN RATS”. Kocatepe Tıp Dergisi, vol. 25, no. 4, 2024, pp. 525-3, doi:10.18229/kocatepetip.1520464.
Vancouver Zeytin Demiral G, Sarıtaş Z, Türk Börü Ü, Görücü Özbek F, Köseoğlu Toksoy C, Bülbül A, Demirel HH, Koç Y, Yasar Tekmanoglulari Z. THERAPEUTIC EFFICACY OF MYRTUS COMMUNIS IN SCIATIC NERVE INJURY: AN EXPERIMENTAL RESEARCH IN RATS. KTD. 2024;25(4):525-3.

88x31.png
Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.