Research Article
BibTex RIS Cite

YOĞUN BAKIM ÜNİTELERİNDE MEKANİK VENTİLASYON ÇIKIŞINDAN KAYNAKLANAN VİRÜS YAYILIMININ DEĞERLENDİRİLMESİ VE UV-C STERİLİZASYONUNUN ETKİSİ

Year 2025, Volume: 26 Issue: 3, 233 - 239, 16.07.2025
https://doi.org/10.18229/kocatepetip.1637686

Abstract

AMAÇ: Bu çalışmanın amacı, yoğun bakım servislerinde, mekanik ventilasyon cihazlarından kaynaklı aerosol viral yayılımın test edilmesi, virus canlılık parametrelerinin incelenmesi ve UV-C sterilizasyonun etkisinin araştırılmasıdır.
GEREÇ VE YÖNTEM: COVID-19 tanısı almış 14 adet gönüllü hastanın bağlı olduğu mekanik ventilasyon cihazı çıkış hattına UV-C sterilizatör entegre edilmiştir. Hasta kaynaklı viral bulaşın tespiti için steril şartlarda filtre örnekleri toplanmıştır. Virolojik Teşhis Laboratuvarı’nda virüs inokülasyonu ve RT-PCR testi yapılmıştır.
BULGULAR: Aşılama testinden elde edilen verilere göre, ‘UV açık’ ve ‘UV kapalı’ modlarında kullanılan filtrelerden alınan örneklerde virüs üremesi görülmedi. Bununla beraber hastaların sürüntü örneklerinde, PCR testine göre COVID-19 pozitif çıksa bile, mekanik ventilasyon çıkış hattından elde edilen örneklerde PCR sonucu negatif olarak tespit edilmiştir.
SONUÇ: Çalışma kapsamında COVID-19 tanısı almış 14 gönüllü hastanın bağlı olduğu mekanik ventilasyon cihazının çıkış hattından aerosol virüs tespiti ve aktivite testleri yapıldı. Çalışmada mekanik ventilasyon alan hastaların solunumlarından aerosol virüsünün ortam havasına yayılma riskinin düşük olduğu belirlendi.

Ethical Statement

Bu çalışma, Afyonkarahisar Sağlık Bilimleri Üniversitesi Klinik Araştırmalar Etik Kurulu’nun 06.08.2021 tarih ve 2021/426 sayılı kararı ile yapılmıştır.

Supporting Institution

Türkiye Sağlık Enstitüleri Başkanlığı

Project Number

8852/11751

Thanks

Bu çalışma Türkiye Sağlık Enstitüleri Başkanlığı tarafından 8852/11751 proje numarası ile desteklenmiştir.

References

  • 1. Li X, Lester D, Rosengarten G, et al. A spatiotemporally resolved infection risk model for airborne transmission of COVID-19 variants in indoor spaces. Science of the Total Environment. 2022;812:152592.
  • 2. Fraser V J, Johnson K, Primack J, et al. Evaluation of rooms with negative pressure ventilation used for respiratory isolation in seven midwestern hospitals. Infection Control & Hospital Epidemiology. 1993;14(11):623-8.
  • 3. Vincent J L, Rello J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units. Jama. 2009;302(21):2323-9.
  • 4. Vogelaers D, De Bels D, Forêt F, et al. ANTHICUS Study Investigators. Patterns of antimicrobial therapy in severe nosocomial infections: empiric choices, proportion of appropriate therapy, and adaptation rates a multicentre, observational survey in critically ill patients. International Journal of Antimicrobial Agents. 2010;35(4): 75-81.
  • 5. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. Jama. 2020;323(16):1574-81.
  • 6. Keane S, Martin-Loeches I. Host-pathogen interaction during mechanical ventilation: systemic or compartmentalized response? Critical Care. 2019;23:134.
  • 7. Tran K, Cimon K, Severn M, et al. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PloS one. 2012;7(4):35797.
  • 8. Heuer J F, Crozier T A, Howard G, et al. Can breathing circuit filters help prevent the spread of influenza A (H1N1) virus from intubated patients?. GMS hygiene and infection control. 2013;8(1):Doc09.
  • 9. Rhee C, Baker M A, Klompas M. Prevention of SARS-CoV-2 and respiratory viral infections in healthcare settings: current and emerging concepts. Current Opinion in Infectious Diseases. 2022;35(4):353-62.
  • 10. Casini B, Tuvo B, Cristina M L, et al. Evaluation of an ultraviolet C (UVC) light-emitting device for disinfection of high touch surfaces in hospital critical areas. International journal of environmental research and public health. 2019;16(19):3572.
  • 11. Yin R, Dai T, Avci P, et al. Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Current Opinion in Pharmacology. 2013;13(5):731-62.
  • 12. Kowalski W. Ultraviolet germicidal irradiation handbook: UVGI for air and surface disinfection.New York: Springer science & Business Media; 2010.
  • 13. Van Doremalen N, Bushmaker T, Morris D H, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England Journal of Medicine. 2020;382(16):1564-7.
  • 14. Chang K. Scientists consider indoor ultraviolet light to zap coronavirus in the air. The New York Times Company. 2020.
  • 15. Kocamemi B A, Kurt H, Hacıoglu S, Yaralı C, Saatci A M, Pakdemirli B. First data-set on SARS-CoV-2 detection for Istanbul wastewaters in Turkey. MedRxiv. 2020;5(6):1-11.
  • 16. Corman V M, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25(3):2000045.
  • 17. Beaussier M, Vanoli E, Zadegan F, et al. Aerodynamic analysis of hospital ventilation according to seasonal variations. A simulation approach to prevent airborne viral transmission pathway during Covid-19 pandemic. Environment international. 2022;158:106872.
  • 18. Goodfellow H D, Kosonen R, editors. Industrial Ventilation Design Guidebook: Volume 1: Fundamentals. Academic Press. 2020.
  • 19. Meng L, Qiu H, Wan L et al. Intubation and ventilation amid the COVID-19 outbreak: Wuhan’s experience. Anesthesiology. 2020;10-97.
  • 20. Renee LC, Matos I, Kevin K. Er al. COVID-19 PRACTICE MANAGEMENT GUIDE Clinical Management of COVID-19, 2020:3-23.
  • 21. Hamner L. High SARS-CoV-2 attack rate following exposure at a choir practice Skagit County, Washington, March 2020. MMWR. Morbidity and mortality weekly report. 2020;69.
  • 22. Morawska L, Cao J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environment international. 2020;139:105730.
  • 23. WHO Considerations for quarantine of individuals in the context of containment for coronavirus disease (COVID-19). March 2020.
  • 24. U.S. PUBLIC HEALTH SERVICE COMMISSIONED CORPS. Optimizing Ventilator Use during the COVID-19 Pandemic. March 2020.
  • 25. Vasilyev AI, Kostyuchenko SV, Kudryavtsev NN, Sobur D A, Sokolov DV. UV disinfection technologies for water, air and surface treatment. Light Eng. 2018;26(1):25-31.
  • 26. Casini B, Tuvo B, Cristina ML, et al. Evaluation of an ultraviolet C (UVC) light-emitting device for disinfection of high touch surfaces in hospital critical areas. International Journal of Environmental Research and Public Health. 2019;16(19):3572.
  • 27. Wurtmann EJ, Wolin SL. RNA under attack: cellular handling of RNA damage. Critical Reviews in Biochemistry and Molecular Biology. 2009;44(1):34-49.
  • 28. Chiappa F, Frascella B, Vigezzi GP, et al. The efficacy of ultraviolet light-emitting technology against coronaviruses: a systematic review. J Hosp Infect. 2021;114:63-78.
  • 29. Trevisan A, Piovesan S, Leonardi A, et al. Unusual high exposure to ultraviolet‐C radiation. Photochemistry and Photobiology. 2006;82(4):1077-9.
  • 30. Lednicky JA, Lauzard M, Fan ZH, et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. International Journal of Infectious Diseases. 2020;100:476-82.
  • 31. Su WL, Hung PP, Lin CP, et al. Masks and closed-loop ventilators prevent environmental contamination by COVID-19 patients in negative-pressure environments. Journal of Microbiology, Immunology and Infection. 2021;54(1):81-4.
  • 32. Altındis M, Aktepe O C, Cetinkaya Z. Determination if Methicillin Resistant Staphylococcus Aureus in Intensive. Kocatepe Tıp Dergisi. 2006;7: 43-6.
  • 33. Ahn J Y, An S, Sohn Y, et al. Environmental contamination in the isolation rooms of COVID-19 patients with severe pneumonia requiring mechanical ventilation or high-flow oxygen therapy. Journal of Hospital Infection. 2020;106(3):570-6.

EVALUATION OF VIRAL DISPERSION FROM MECHANICAL VENTILATION OUTLETS IN INTENSIVE CARE UNITS AND THE EFFECTIVENESS OF UV-C STERILIZATION

Year 2025, Volume: 26 Issue: 3, 233 - 239, 16.07.2025
https://doi.org/10.18229/kocatepetip.1637686

Abstract

OBJECTIVE: This study aimed to test aerosol-based viral dispersion originating from mechanical ventilation devices in intensive care units, examine virus viability parameters, and investigate the effect of UV-C sterilization.
MATERIAL AND METHODS: A UV-C sterilizer was integrated into the mechanical ventilation device outlet line connected to 14 volunteer patients diagnosed with COVID-19. Filter samples were collected under sterile conditions to detect patient-related viral contamination. Viral inoculation and RT-PCR tests were performed in the Virological Diagnostic Laboratory.
RESULTS: According to the data from the inoculation test, no virus growth occurred in the samples obtained from the filters used in the ‘UV on’ and ‘UV off’ modes. However, even if COVID-19 was positive according to the PCR test in the patients' swab samples, the PCR result was detected as negative in the samples obtained from the outlet line of the mechanical ventilation.
CONCLUSIONS: Within the scope of the study, aerosol virus detection and activity tests were performed from the outlet line of the mechanical ventilation device to which 14 volunteer patients diagnosed with COVID-19 were connected. The findings suggest that the risk of aerosolized virus spreading into the ambient air from patients receiving mechanical ventilation is low.

Project Number

8852/11751

References

  • 1. Li X, Lester D, Rosengarten G, et al. A spatiotemporally resolved infection risk model for airborne transmission of COVID-19 variants in indoor spaces. Science of the Total Environment. 2022;812:152592.
  • 2. Fraser V J, Johnson K, Primack J, et al. Evaluation of rooms with negative pressure ventilation used for respiratory isolation in seven midwestern hospitals. Infection Control & Hospital Epidemiology. 1993;14(11):623-8.
  • 3. Vincent J L, Rello J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units. Jama. 2009;302(21):2323-9.
  • 4. Vogelaers D, De Bels D, Forêt F, et al. ANTHICUS Study Investigators. Patterns of antimicrobial therapy in severe nosocomial infections: empiric choices, proportion of appropriate therapy, and adaptation rates a multicentre, observational survey in critically ill patients. International Journal of Antimicrobial Agents. 2010;35(4): 75-81.
  • 5. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. Jama. 2020;323(16):1574-81.
  • 6. Keane S, Martin-Loeches I. Host-pathogen interaction during mechanical ventilation: systemic or compartmentalized response? Critical Care. 2019;23:134.
  • 7. Tran K, Cimon K, Severn M, et al. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PloS one. 2012;7(4):35797.
  • 8. Heuer J F, Crozier T A, Howard G, et al. Can breathing circuit filters help prevent the spread of influenza A (H1N1) virus from intubated patients?. GMS hygiene and infection control. 2013;8(1):Doc09.
  • 9. Rhee C, Baker M A, Klompas M. Prevention of SARS-CoV-2 and respiratory viral infections in healthcare settings: current and emerging concepts. Current Opinion in Infectious Diseases. 2022;35(4):353-62.
  • 10. Casini B, Tuvo B, Cristina M L, et al. Evaluation of an ultraviolet C (UVC) light-emitting device for disinfection of high touch surfaces in hospital critical areas. International journal of environmental research and public health. 2019;16(19):3572.
  • 11. Yin R, Dai T, Avci P, et al. Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Current Opinion in Pharmacology. 2013;13(5):731-62.
  • 12. Kowalski W. Ultraviolet germicidal irradiation handbook: UVGI for air and surface disinfection.New York: Springer science & Business Media; 2010.
  • 13. Van Doremalen N, Bushmaker T, Morris D H, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England Journal of Medicine. 2020;382(16):1564-7.
  • 14. Chang K. Scientists consider indoor ultraviolet light to zap coronavirus in the air. The New York Times Company. 2020.
  • 15. Kocamemi B A, Kurt H, Hacıoglu S, Yaralı C, Saatci A M, Pakdemirli B. First data-set on SARS-CoV-2 detection for Istanbul wastewaters in Turkey. MedRxiv. 2020;5(6):1-11.
  • 16. Corman V M, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25(3):2000045.
  • 17. Beaussier M, Vanoli E, Zadegan F, et al. Aerodynamic analysis of hospital ventilation according to seasonal variations. A simulation approach to prevent airborne viral transmission pathway during Covid-19 pandemic. Environment international. 2022;158:106872.
  • 18. Goodfellow H D, Kosonen R, editors. Industrial Ventilation Design Guidebook: Volume 1: Fundamentals. Academic Press. 2020.
  • 19. Meng L, Qiu H, Wan L et al. Intubation and ventilation amid the COVID-19 outbreak: Wuhan’s experience. Anesthesiology. 2020;10-97.
  • 20. Renee LC, Matos I, Kevin K. Er al. COVID-19 PRACTICE MANAGEMENT GUIDE Clinical Management of COVID-19, 2020:3-23.
  • 21. Hamner L. High SARS-CoV-2 attack rate following exposure at a choir practice Skagit County, Washington, March 2020. MMWR. Morbidity and mortality weekly report. 2020;69.
  • 22. Morawska L, Cao J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environment international. 2020;139:105730.
  • 23. WHO Considerations for quarantine of individuals in the context of containment for coronavirus disease (COVID-19). March 2020.
  • 24. U.S. PUBLIC HEALTH SERVICE COMMISSIONED CORPS. Optimizing Ventilator Use during the COVID-19 Pandemic. March 2020.
  • 25. Vasilyev AI, Kostyuchenko SV, Kudryavtsev NN, Sobur D A, Sokolov DV. UV disinfection technologies for water, air and surface treatment. Light Eng. 2018;26(1):25-31.
  • 26. Casini B, Tuvo B, Cristina ML, et al. Evaluation of an ultraviolet C (UVC) light-emitting device for disinfection of high touch surfaces in hospital critical areas. International Journal of Environmental Research and Public Health. 2019;16(19):3572.
  • 27. Wurtmann EJ, Wolin SL. RNA under attack: cellular handling of RNA damage. Critical Reviews in Biochemistry and Molecular Biology. 2009;44(1):34-49.
  • 28. Chiappa F, Frascella B, Vigezzi GP, et al. The efficacy of ultraviolet light-emitting technology against coronaviruses: a systematic review. J Hosp Infect. 2021;114:63-78.
  • 29. Trevisan A, Piovesan S, Leonardi A, et al. Unusual high exposure to ultraviolet‐C radiation. Photochemistry and Photobiology. 2006;82(4):1077-9.
  • 30. Lednicky JA, Lauzard M, Fan ZH, et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. International Journal of Infectious Diseases. 2020;100:476-82.
  • 31. Su WL, Hung PP, Lin CP, et al. Masks and closed-loop ventilators prevent environmental contamination by COVID-19 patients in negative-pressure environments. Journal of Microbiology, Immunology and Infection. 2021;54(1):81-4.
  • 32. Altındis M, Aktepe O C, Cetinkaya Z. Determination if Methicillin Resistant Staphylococcus Aureus in Intensive. Kocatepe Tıp Dergisi. 2006;7: 43-6.
  • 33. Ahn J Y, An S, Sohn Y, et al. Environmental contamination in the isolation rooms of COVID-19 patients with severe pneumonia requiring mechanical ventilation or high-flow oxygen therapy. Journal of Hospital Infection. 2020;106(3):570-6.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Intensive Care
Journal Section Articles
Authors

Elif Kağa 0000-0002-2279-6105

Sadık Kağa 0000-0002-6303-7981

Ugur Fidan 0000-0003-0356-017X

Ahmet Murat Koyuncu 0000-0002-4331-2704

Gizem Fatma Ergüner 0000-0002-6436-6891

Abdullah Yalçın 0000-0001-7732-8213

Project Number 8852/11751
Publication Date July 16, 2025
Submission Date February 11, 2025
Acceptance Date April 15, 2025
Published in Issue Year 2025 Volume: 26 Issue: 3

Cite

APA Kağa, E., Kağa, S., Fidan, U., … Koyuncu, A. M. (2025). YOĞUN BAKIM ÜNİTELERİNDE MEKANİK VENTİLASYON ÇIKIŞINDAN KAYNAKLANAN VİRÜS YAYILIMININ DEĞERLENDİRİLMESİ VE UV-C STERİLİZASYONUNUN ETKİSİ. Kocatepe Tıp Dergisi, 26(3), 233-239. https://doi.org/10.18229/kocatepetip.1637686
AMA Kağa E, Kağa S, Fidan U, Koyuncu AM, Ergüner GF, Yalçın A. YOĞUN BAKIM ÜNİTELERİNDE MEKANİK VENTİLASYON ÇIKIŞINDAN KAYNAKLANAN VİRÜS YAYILIMININ DEĞERLENDİRİLMESİ VE UV-C STERİLİZASYONUNUN ETKİSİ. Kocatepe Tıp Dergisi. July 2025;26(3):233-239. doi:10.18229/kocatepetip.1637686
Chicago Kağa, Elif, Sadık Kağa, Ugur Fidan, Ahmet Murat Koyuncu, Gizem Fatma Ergüner, and Abdullah Yalçın. “YOĞUN BAKIM ÜNİTELERİNDE MEKANİK VENTİLASYON ÇIKIŞINDAN KAYNAKLANAN VİRÜS YAYILIMININ DEĞERLENDİRİLMESİ VE UV-C STERİLİZASYONUNUN ETKİSİ”. Kocatepe Tıp Dergisi 26, no. 3 (July 2025): 233-39. https://doi.org/10.18229/kocatepetip.1637686.
EndNote Kağa E, Kağa S, Fidan U, Koyuncu AM, Ergüner GF, Yalçın A (July 1, 2025) YOĞUN BAKIM ÜNİTELERİNDE MEKANİK VENTİLASYON ÇIKIŞINDAN KAYNAKLANAN VİRÜS YAYILIMININ DEĞERLENDİRİLMESİ VE UV-C STERİLİZASYONUNUN ETKİSİ. Kocatepe Tıp Dergisi 26 3 233–239.
IEEE E. Kağa, S. Kağa, U. Fidan, A. M. Koyuncu, G. F. Ergüner, and A. Yalçın, “YOĞUN BAKIM ÜNİTELERİNDE MEKANİK VENTİLASYON ÇIKIŞINDAN KAYNAKLANAN VİRÜS YAYILIMININ DEĞERLENDİRİLMESİ VE UV-C STERİLİZASYONUNUN ETKİSİ”, Kocatepe Tıp Dergisi, vol. 26, no. 3, pp. 233–239, 2025, doi: 10.18229/kocatepetip.1637686.
ISNAD Kağa, Elif et al. “YOĞUN BAKIM ÜNİTELERİNDE MEKANİK VENTİLASYON ÇIKIŞINDAN KAYNAKLANAN VİRÜS YAYILIMININ DEĞERLENDİRİLMESİ VE UV-C STERİLİZASYONUNUN ETKİSİ”. Kocatepe Tıp Dergisi 26/3 (July2025), 233-239. https://doi.org/10.18229/kocatepetip.1637686.
JAMA Kağa E, Kağa S, Fidan U, Koyuncu AM, Ergüner GF, Yalçın A. YOĞUN BAKIM ÜNİTELERİNDE MEKANİK VENTİLASYON ÇIKIŞINDAN KAYNAKLANAN VİRÜS YAYILIMININ DEĞERLENDİRİLMESİ VE UV-C STERİLİZASYONUNUN ETKİSİ. Kocatepe Tıp Dergisi. 2025;26:233–239.
MLA Kağa, Elif et al. “YOĞUN BAKIM ÜNİTELERİNDE MEKANİK VENTİLASYON ÇIKIŞINDAN KAYNAKLANAN VİRÜS YAYILIMININ DEĞERLENDİRİLMESİ VE UV-C STERİLİZASYONUNUN ETKİSİ”. Kocatepe Tıp Dergisi, vol. 26, no. 3, 2025, pp. 233-9, doi:10.18229/kocatepetip.1637686.
Vancouver Kağa E, Kağa S, Fidan U, Koyuncu AM, Ergüner GF, Yalçın A. YOĞUN BAKIM ÜNİTELERİNDE MEKANİK VENTİLASYON ÇIKIŞINDAN KAYNAKLANAN VİRÜS YAYILIMININ DEĞERLENDİRİLMESİ VE UV-C STERİLİZASYONUNUN ETKİSİ. Kocatepe Tıp Dergisi. 2025;26(3):233-9.