Research Article
BibTex RIS Cite

A Characterization of Factorable Surfaces in Euclidean 4-Space E^4

Year 2018, , 15 - 20, 31.05.2018
https://doi.org/10.34088/kojose.403665

Abstract

In this
paper, we consider a factorable surface in Euclidean E^4 with its curvature
ellipse. We classify the origin of the normal space of such a surface according
to whether it is hyperbolic, parabolic, or elliptic. Further, we give the
necessary and sufficient condition of the factorable surface to become Wintgen
ideal surface.

References

  • Chen B. Y., 1973. Geometry of Submanifolds. Marcel Dekker, New York.
  • Gutierrez Nunez J.M., Romero Fuster M.C., Sanchez-Bringas F., 2008. Codazzi fields on surfaces immersed in Euclidean spaces. Osaka J. Math 45, 877‒894.
  • Wintgen P., 1979.Sur 1’inegalite de Chen-Wilmore. C. R. Acad. Sci., Paris, 288, 993‒995.
  • Arslan K., Bayram B.K., Bulca B., Öztürk G., 2012. Generalized rotation surfaces in . Results in Mathematics 61, 315‒327.
  • Bayram B.K., Bulca B., Arslan K., Öztürk G., 2009. Superconformal ruled surfaces in . Math. Commun. 14, 235‒244.
  • Bulca B., Arslan K., 2014. Semiparallel Wintgen ideal surfaces in . C. R. Acad. Bulgare Sci. 67, 613‒622.
  • Bulca B., Arslan K., Bayram B.K., Öztürk G., 2012. Spherical product surface in . An. St. Univ. Ovidius Constanta 20, 41‒54.
  • Chen B. Y., 2011. On Wintgen ideal surfaces, Proceedings of The Conference RIGA 2011, Riemannian Geometry and Applications, Bucharest, Romania, 10-14 May 2011, 59‒74.
  • İyigün E., Arslan K., Öztürk G., 2018. A characterization of Chen surfaces in . Bull. Malays. Math. Math. Soc. 31, 209‒215.
  • Woestyne I. V, 1993. A new characterization of helicoids. Geometry and topology submanifolds World Sci. Publ. River Edge, 267‒273.
  • Woestyne I. V, 1995. Minimal homothetical hypersurfaces of a semi-Euclidean space. Results Math. 27 , 333‒342.
  • Lopez R., Moruz M., 2015. Translation and homothetical surfaces in Euclidean spaces with constant curvature. J. Korean Math. Soc. 52, 523‒535.
  • Meng H., Liu H. 2009.Factorable surfaces in Minkowski space. Bull. Korean Math. Soc. 46, 155‒169.
  • Yu Y., Liu H., 2007. The factorable minimal surfaces. Proceedings of the Eleventh International Workshop on Diff. Geom. 11, 33‒39.
  • Büyükkütük S., Öztürk G., 2017. Spacelike factorable surfaces in four-dimensional Minkowski space. Bulletin of Mathematical Analysis and Applications 9, 12‒20.
  • Aminov Y. A., 1994. Surfaces in with a Gaussian curvature coinciding with a Gaussian torsion up to sign. Mathematical Notes 56(6), 5‒6.
  • Bulca B., Arslan K., 2013. Surfaces given with the Monge patch in . Journal of Mathematical Physics, Analysis, Geometry 9, 435‒447.
  • Little J.A., 1969. On singularities of submanifolds of higher dimensional Euclidean space. Ann. Math. Pura Appl. (Ser. 4A) 83, 261‒335.
Year 2018, , 15 - 20, 31.05.2018
https://doi.org/10.34088/kojose.403665

Abstract

References

  • Chen B. Y., 1973. Geometry of Submanifolds. Marcel Dekker, New York.
  • Gutierrez Nunez J.M., Romero Fuster M.C., Sanchez-Bringas F., 2008. Codazzi fields on surfaces immersed in Euclidean spaces. Osaka J. Math 45, 877‒894.
  • Wintgen P., 1979.Sur 1’inegalite de Chen-Wilmore. C. R. Acad. Sci., Paris, 288, 993‒995.
  • Arslan K., Bayram B.K., Bulca B., Öztürk G., 2012. Generalized rotation surfaces in . Results in Mathematics 61, 315‒327.
  • Bayram B.K., Bulca B., Arslan K., Öztürk G., 2009. Superconformal ruled surfaces in . Math. Commun. 14, 235‒244.
  • Bulca B., Arslan K., 2014. Semiparallel Wintgen ideal surfaces in . C. R. Acad. Bulgare Sci. 67, 613‒622.
  • Bulca B., Arslan K., Bayram B.K., Öztürk G., 2012. Spherical product surface in . An. St. Univ. Ovidius Constanta 20, 41‒54.
  • Chen B. Y., 2011. On Wintgen ideal surfaces, Proceedings of The Conference RIGA 2011, Riemannian Geometry and Applications, Bucharest, Romania, 10-14 May 2011, 59‒74.
  • İyigün E., Arslan K., Öztürk G., 2018. A characterization of Chen surfaces in . Bull. Malays. Math. Math. Soc. 31, 209‒215.
  • Woestyne I. V, 1993. A new characterization of helicoids. Geometry and topology submanifolds World Sci. Publ. River Edge, 267‒273.
  • Woestyne I. V, 1995. Minimal homothetical hypersurfaces of a semi-Euclidean space. Results Math. 27 , 333‒342.
  • Lopez R., Moruz M., 2015. Translation and homothetical surfaces in Euclidean spaces with constant curvature. J. Korean Math. Soc. 52, 523‒535.
  • Meng H., Liu H. 2009.Factorable surfaces in Minkowski space. Bull. Korean Math. Soc. 46, 155‒169.
  • Yu Y., Liu H., 2007. The factorable minimal surfaces. Proceedings of the Eleventh International Workshop on Diff. Geom. 11, 33‒39.
  • Büyükkütük S., Öztürk G., 2017. Spacelike factorable surfaces in four-dimensional Minkowski space. Bulletin of Mathematical Analysis and Applications 9, 12‒20.
  • Aminov Y. A., 1994. Surfaces in with a Gaussian curvature coinciding with a Gaussian torsion up to sign. Mathematical Notes 56(6), 5‒6.
  • Bulca B., Arslan K., 2013. Surfaces given with the Monge patch in . Journal of Mathematical Physics, Analysis, Geometry 9, 435‒447.
  • Little J.A., 1969. On singularities of submanifolds of higher dimensional Euclidean space. Ann. Math. Pura Appl. (Ser. 4A) 83, 261‒335.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sezgin Büyükkütük 0000-0002-1845-0822

Günay Öztürk

Publication Date May 31, 2018
Acceptance Date April 26, 2018
Published in Issue Year 2018

Cite

APA Büyükkütük, S., & Öztürk, G. (2018). A Characterization of Factorable Surfaces in Euclidean 4-Space E^4. Kocaeli Journal of Science and Engineering, 1(1), 15-20. https://doi.org/10.34088/kojose.403665