Araştırma Makalesi
BibTex RIS Kaynak Göster

A Characterization of Factorable Surfaces in Euclidean 4-Space E^4

Yıl 2018, , 15 - 20, 31.05.2018
https://doi.org/10.34088/kojose.403665

Öz

In this
paper, we consider a factorable surface in Euclidean E^4 with its curvature
ellipse. We classify the origin of the normal space of such a surface according
to whether it is hyperbolic, parabolic, or elliptic. Further, we give the
necessary and sufficient condition of the factorable surface to become Wintgen
ideal surface.

Kaynakça

  • Chen B. Y., 1973. Geometry of Submanifolds. Marcel Dekker, New York.
  • Gutierrez Nunez J.M., Romero Fuster M.C., Sanchez-Bringas F., 2008. Codazzi fields on surfaces immersed in Euclidean spaces. Osaka J. Math 45, 877‒894.
  • Wintgen P., 1979.Sur 1’inegalite de Chen-Wilmore. C. R. Acad. Sci., Paris, 288, 993‒995.
  • Arslan K., Bayram B.K., Bulca B., Öztürk G., 2012. Generalized rotation surfaces in . Results in Mathematics 61, 315‒327.
  • Bayram B.K., Bulca B., Arslan K., Öztürk G., 2009. Superconformal ruled surfaces in . Math. Commun. 14, 235‒244.
  • Bulca B., Arslan K., 2014. Semiparallel Wintgen ideal surfaces in . C. R. Acad. Bulgare Sci. 67, 613‒622.
  • Bulca B., Arslan K., Bayram B.K., Öztürk G., 2012. Spherical product surface in . An. St. Univ. Ovidius Constanta 20, 41‒54.
  • Chen B. Y., 2011. On Wintgen ideal surfaces, Proceedings of The Conference RIGA 2011, Riemannian Geometry and Applications, Bucharest, Romania, 10-14 May 2011, 59‒74.
  • İyigün E., Arslan K., Öztürk G., 2018. A characterization of Chen surfaces in . Bull. Malays. Math. Math. Soc. 31, 209‒215.
  • Woestyne I. V, 1993. A new characterization of helicoids. Geometry and topology submanifolds World Sci. Publ. River Edge, 267‒273.
  • Woestyne I. V, 1995. Minimal homothetical hypersurfaces of a semi-Euclidean space. Results Math. 27 , 333‒342.
  • Lopez R., Moruz M., 2015. Translation and homothetical surfaces in Euclidean spaces with constant curvature. J. Korean Math. Soc. 52, 523‒535.
  • Meng H., Liu H. 2009.Factorable surfaces in Minkowski space. Bull. Korean Math. Soc. 46, 155‒169.
  • Yu Y., Liu H., 2007. The factorable minimal surfaces. Proceedings of the Eleventh International Workshop on Diff. Geom. 11, 33‒39.
  • Büyükkütük S., Öztürk G., 2017. Spacelike factorable surfaces in four-dimensional Minkowski space. Bulletin of Mathematical Analysis and Applications 9, 12‒20.
  • Aminov Y. A., 1994. Surfaces in with a Gaussian curvature coinciding with a Gaussian torsion up to sign. Mathematical Notes 56(6), 5‒6.
  • Bulca B., Arslan K., 2013. Surfaces given with the Monge patch in . Journal of Mathematical Physics, Analysis, Geometry 9, 435‒447.
  • Little J.A., 1969. On singularities of submanifolds of higher dimensional Euclidean space. Ann. Math. Pura Appl. (Ser. 4A) 83, 261‒335.
Yıl 2018, , 15 - 20, 31.05.2018
https://doi.org/10.34088/kojose.403665

Öz

Kaynakça

  • Chen B. Y., 1973. Geometry of Submanifolds. Marcel Dekker, New York.
  • Gutierrez Nunez J.M., Romero Fuster M.C., Sanchez-Bringas F., 2008. Codazzi fields on surfaces immersed in Euclidean spaces. Osaka J. Math 45, 877‒894.
  • Wintgen P., 1979.Sur 1’inegalite de Chen-Wilmore. C. R. Acad. Sci., Paris, 288, 993‒995.
  • Arslan K., Bayram B.K., Bulca B., Öztürk G., 2012. Generalized rotation surfaces in . Results in Mathematics 61, 315‒327.
  • Bayram B.K., Bulca B., Arslan K., Öztürk G., 2009. Superconformal ruled surfaces in . Math. Commun. 14, 235‒244.
  • Bulca B., Arslan K., 2014. Semiparallel Wintgen ideal surfaces in . C. R. Acad. Bulgare Sci. 67, 613‒622.
  • Bulca B., Arslan K., Bayram B.K., Öztürk G., 2012. Spherical product surface in . An. St. Univ. Ovidius Constanta 20, 41‒54.
  • Chen B. Y., 2011. On Wintgen ideal surfaces, Proceedings of The Conference RIGA 2011, Riemannian Geometry and Applications, Bucharest, Romania, 10-14 May 2011, 59‒74.
  • İyigün E., Arslan K., Öztürk G., 2018. A characterization of Chen surfaces in . Bull. Malays. Math. Math. Soc. 31, 209‒215.
  • Woestyne I. V, 1993. A new characterization of helicoids. Geometry and topology submanifolds World Sci. Publ. River Edge, 267‒273.
  • Woestyne I. V, 1995. Minimal homothetical hypersurfaces of a semi-Euclidean space. Results Math. 27 , 333‒342.
  • Lopez R., Moruz M., 2015. Translation and homothetical surfaces in Euclidean spaces with constant curvature. J. Korean Math. Soc. 52, 523‒535.
  • Meng H., Liu H. 2009.Factorable surfaces in Minkowski space. Bull. Korean Math. Soc. 46, 155‒169.
  • Yu Y., Liu H., 2007. The factorable minimal surfaces. Proceedings of the Eleventh International Workshop on Diff. Geom. 11, 33‒39.
  • Büyükkütük S., Öztürk G., 2017. Spacelike factorable surfaces in four-dimensional Minkowski space. Bulletin of Mathematical Analysis and Applications 9, 12‒20.
  • Aminov Y. A., 1994. Surfaces in with a Gaussian curvature coinciding with a Gaussian torsion up to sign. Mathematical Notes 56(6), 5‒6.
  • Bulca B., Arslan K., 2013. Surfaces given with the Monge patch in . Journal of Mathematical Physics, Analysis, Geometry 9, 435‒447.
  • Little J.A., 1969. On singularities of submanifolds of higher dimensional Euclidean space. Ann. Math. Pura Appl. (Ser. 4A) 83, 261‒335.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sezgin Büyükkütük 0000-0002-1845-0822

Günay Öztürk

Yayımlanma Tarihi 31 Mayıs 2018
Kabul Tarihi 26 Nisan 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Büyükkütük, S., & Öztürk, G. (2018). A Characterization of Factorable Surfaces in Euclidean 4-Space E^4. Kocaeli Journal of Science and Engineering, 1(1), 15-20. https://doi.org/10.34088/kojose.403665