Research Article
BibTex RIS Cite

Theoretical Investigation of Al and Ga Doped B12N12 Nanocage for Detecting and Capturing Lung Cancer-Related Volatile Organic Compounds

Year 2025, Volume: 8 Issue: 1, 52 - 59, 31.05.2025
https://doi.org/10.34088/kojose.1586949

Abstract

Acetone and Acrolein, lung cancer-related volatile organic compounds (VOCs), adsorbtion on Pristine and Al/Ga doped B_12 N_12 nanocage were employed using Density Functional Theory (DFT). The calculated interaction energies between pristine B_12 N_12 and the molecules indicate strong interactions, suggesting that this material can effectively capture Acetone and Acrolein molecules. Furthermore, notable changes in the electronic band gaps are observed, suggesting potential applications in molecular detection using electronic devices. The study then focused on investigating the effects of doping B_12 N_12 with aluminum (Al) and gallium (Ga) atoms to explore the impact of doping on the nanocage's interactions with molecules and its electronic properties. Calculations revealed that doped B_12 N_12 exhibits significantly enhanced interactions with molecules, accompanied by unique changes in its electronic structure. These results, further supported by the results of the dipole moment analysis, highlight the potential for developing materials that exhibit high efficiency in VOCs detection and capture.

References

  • [1] Leiter, A., Veluswamy, R. R., Wisnivesky, J. P., 2023. The global burden of lung cancer: current status and future trends. Nature reviews Clinical oncology, 20(9), 624-639.
  • [2] Antoniou, S., Gaude, E., Schee, M., Janes, S., Rintoul, R. 2019. The potential of breath analysis to improve outcome for patients with lung cancer. Journal of Breath Research, 13(3), 034002.
  • [3] Dent, A. G., Sutedja, T. G., Zimmerman, P. V. 2013. Exhaled breath analysis for lung cancer. Journal of Thoracic Disease, 5(5), S540.
  • [4] Nardi-Agmon, I., Peled, N. 2017. Exhaled breath analysis for the early detection of lung cancer: recent developments and future prospects. Lung Cancer: Targets and Therapy, 2017(8), 31-38.
  • [5] Fan, X., Zhong, R., Liang, H., Zhong, Q., Huang, H., He, J., He, J. 2024. Exhaled VOC detection in lung cancer screening: a comprehensive meta-analysis. BMC cancer, 24(1), 775.
  • [6] Le, T., Priefer, R. 2023. Detection technologies of volatile organic compounds in the breath for cancer diagnoses. Talanta, 265(1), 124767.
  • [7] Itoh, T., Miwa, T., Tsuruta, A., Akamatsu, T., Izu, N., Shin, W., Setoguchi, Y. 2016. Development of an exhaled breath monitoring system with semiconductive gas sensors, a gas condenser unit, and gas chromatograph columns. Sensors, 16(11), 1891.
  • [8] Capuano, R., Santonico, M., Pennazza, G., Ghezzi, S., Martinelli, E., Roscioni, C., D’Amico, A. 2015. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs. Scientific Reports, 5(1), 16491.
  • [9] Peng, G., Hakim, M., Broza, Y., Billan, S., Abdah-Bortnyak, R., Kuten, A., Haick, H. 2010. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. British Journal of Cancer, 103(4), 542-551.
  • [10] Fu, X., Li, M., Knipp, R., Nantz, M., Bousamra, M. 2013. Noninvasive detection of lung cancer using exhaled breath. Cancer Medicine, 3(1), 174-181.
  • [11] Scheepers, M., Al-Difaie, Z., Brandts, L., Peeters, A., Grinsven, B., Bouvy, N. 2022. Diagnostic performance of electronic noses in cancer diagnoses using exhaled breath. Jama Network Open, 5(6), e2219372.
  • [12] Sakumura, Y., Koyama, Y., Tokutake, H., Hida, T., Sato, K., Itoh, T., Shin, W. 2017. Diagnosis by volatile organic compounds in exhaled breath from lung cancer patients using support vector machine algorithm. Sensors, 17(2), 287.
  • [13] Liu, T., Cui, Z., Li, X., Cui, H., Liu, Y. 2020. Al-doped MoSe2 monolayer as a promising biosensor for exhaled breath analysis: a dft study. Acs Omega, 6(1), 988-995.
  • [14] Noormohammadbeigi, M., Kamalinahad, S., Shamlouei, H. R., Mehr, F. I., Rajabi, R. 2023. In Silico Investigation of Al, Si and Ge Dopants Effect on Structural and Electrical Properties of Pristine B12N12 Nanocage Toward Acrolein Adsorption. Journal of Inorganic and Organometallic Polymers and Materials, 33(10), 3272-3281.
  • [15] Berisha, A. 2023. Unraveling the electronic influence and nature of covalent bonding of aryl and alkyl radicals on the B12N12 nanocage cluster. Scientific Reports, 13(1), 752.
  • [16] Wu, S., Li, L., Liang, Q., Gao, H., Tang, T., Tang, Y. 2023. A DFT study of sulforaphane adsorption on the group III nitrides (B12N12, Al12N12 and Ga12N12) nanocages. Journal of Biomolecular Structure and Dynamics, 1-12.
  • [17] Baei, M. 2013. Si‐doped B12N12 nanocage as an adsorbent for dissociation of N2O to N2 molecule. Heteroatom Chemistry, 24(6), 476-481.
  • [18] Sayhan, S. and Kinal, A. 2014. Stability of endohedral hydrogen doped boron nitride nanocages: a density functional theory study. Asian Journal of Chemistry, 26(18), 5935-5939.
  • [19] Silva, A. L. P., de Sousa Sousa, N., de Jesus Gomes Varela Júnior, J. 2023. Theoretical studies with B12N12 as a toxic gas sensor: a review. Journal of Nanoparticle Research, 25(1), 22.
  • [20] Souri, M. 2023. Density functional theory study of Ni-modified B12N12 nanocages as promising nonlinear optical materials. Chemical Physics Letters, 830(1), 140769.
  • [21] Roy, R. S., Banerjee, S., Ghosh, S., Ghosh, A., Das, A. K. 2024. A comparative study of electronic structure, adsorption properties, and optical responses of furan and tetrahydrofuran adsorbed pristine, Al and Ga doped B12X12 (X= N and P) nanocages. Journal of Molecular Structure, 1296(1), 136854.
  • [22] Huang, J., Mohammed, S. M., Alsaikhan, F., Mahdi, M. H., Adil, M., Khudair, S. A., Rushchitc, A. A. 2023. DFT study of D-Penicillamine adsorption on Al and Ga doped boron nitride (Al-B11N12 and Ga-B11N12) nanoclusters as drug delivery agents. Journal of Molecular Liquids, 383(1), 122056.
  • [23] Louis, H., Egemonye, T., Unimuke, T., Inah, B., Edet, H., Eno, E., Adeyinka, A. (2022). Detection of carbon, sulfur, and nitrogen dioxide pollutants with a 2D Ca12O12 nanostructured material. Acs Omega, 7(39), 34929-34943.
  • [24] Silva, A. and Júnior, J. 2022. Density functional theory study of cu-modified B12N12 nanocage as a chemical sensor for carbon monoxide gas. Inorganic Chemistry, 62(5), 1926-1934.
  • [25] Sarvestani, M. R. J., Vahed, S. A., Ahmadi, R. 2024. Cefalexin adsorption on the surface of pristine and Al-doped boron nitride nanocages (B12N12 and AlB11N12): A theoretical study. South African Journal of Chemical Engineering, 47(1), 60-66.
  • [26] Oishi, A. A., Dhali, P., Das, A., Mondal, S., Rad, A. S., Hasan, M. M. 2022. Study of the adsorption of chloropicrin on pure and Ga and Al doped B12N12: a comprehensive DFT and QTAIM investigation. Molecular Simulation, 48(9), 776-788.
  • [27] Soler J. M., Artacho E., Gale J. D., García A., Junquera J., Ordejón P., Sánchez-Portal D. 2002. The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11), pp. 2745–2779.
  • [28] Hohenberg P., Kohn W., 1964. Inhomogeneous electron gas. Physical Review, 136(3B), pp. B864- B872.
  • [29] Kohn W., Sham L. J., 1965. Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), pp. A1133- A1139.
  • [30] Perdew J. P., Burke K., Ernzerhof M., 1996. Generalized gradient approximation made simple. Physical Review Letters, 77(18), pp. 3865-3868.
  • [31] Monkhorst H. J., Pack J. D., 1976. Special points for Brillouin-zone integrations. Physical Review B, 13(12), pp. 5188-5192.
  • [32] Hamann, D. R., Schlüter, M., Chiang, C. 1979. Norm-conserving pseudopotentials. Physical Review Letters, 43(20), 1494.
  • [33] Grimme S., 2006. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of Computational Chemistry, 27(15), pp. 1787-1799.
  • [34] Momma K., Izumi F., 2011. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), pp. 1272-1276.
  • [35] Szary, M. J. 2024. Toward high selectivity of sensor arrays: Enhanced adsorption interaction and selectivity of gas detection (N2, O2, NO, CO, CO2, NO2, SO2, AlH3, NH3, and PH3) on transition metal dichalcogenides (MoS2, MoSe2, and MoTe2). Acta Materialia, 274, 120016.
  • [36] Enujekwu, F. M., Zhang, Y., Ezeh, C. I., Zhao, H., Xu, M., Besley, E., Wu, T. 2021. N-doping enabled defect-engineering of MoS2 for enhanced and selective adsorption of CO2: A DFT approach. Applied Surface Science, 542, 148556.
  • [37] Fonseca Guerra, C., Handgraaf, J. W., Baerends, E. J., Bickelhaupt, F. M. 2004. Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. Journal of Computational Chemistry, 25(2), 189-210.

Theoretical Investigation of Al and Ga Doped B12N12 Nanocage for Detecting and Capturing Lung Cancer-Related Volatile Organic Compounds

Year 2025, Volume: 8 Issue: 1, 52 - 59, 31.05.2025
https://doi.org/10.34088/kojose.1586949

Abstract

Acetone and Acrolein, lung cancer-related volatile organic compounds (VOCs), adsorbtion on Pristine and Al/Ga doped B_12 N_12 nanocage were employed using Density Functional Theory (DFT). The calculated interaction energies between pristine B_12 N_12 and the molecules indicate strong interactions, suggesting that this material can effectively capture Acetone and Acrolein molecules. Furthermore, notable changes in the electronic band gaps are observed, suggesting potential applications in molecular detection using electronic devices. The study then focused on investigating the effects of doping B_12 N_12 with aluminum (Al) and gallium (Ga) atoms to explore the impact of doping on the nanocage's interactions with molecules and its electronic properties. Calculations revealed that doped B_12 N_12 exhibits significantly enhanced interactions with molecules, accompanied by unique changes in its electronic structure. These results, further supported by the results of the dipole moment analysis, highlight the potential for developing materials that exhibit high efficiency in VOCs detection and capture.

References

  • [1] Leiter, A., Veluswamy, R. R., Wisnivesky, J. P., 2023. The global burden of lung cancer: current status and future trends. Nature reviews Clinical oncology, 20(9), 624-639.
  • [2] Antoniou, S., Gaude, E., Schee, M., Janes, S., Rintoul, R. 2019. The potential of breath analysis to improve outcome for patients with lung cancer. Journal of Breath Research, 13(3), 034002.
  • [3] Dent, A. G., Sutedja, T. G., Zimmerman, P. V. 2013. Exhaled breath analysis for lung cancer. Journal of Thoracic Disease, 5(5), S540.
  • [4] Nardi-Agmon, I., Peled, N. 2017. Exhaled breath analysis for the early detection of lung cancer: recent developments and future prospects. Lung Cancer: Targets and Therapy, 2017(8), 31-38.
  • [5] Fan, X., Zhong, R., Liang, H., Zhong, Q., Huang, H., He, J., He, J. 2024. Exhaled VOC detection in lung cancer screening: a comprehensive meta-analysis. BMC cancer, 24(1), 775.
  • [6] Le, T., Priefer, R. 2023. Detection technologies of volatile organic compounds in the breath for cancer diagnoses. Talanta, 265(1), 124767.
  • [7] Itoh, T., Miwa, T., Tsuruta, A., Akamatsu, T., Izu, N., Shin, W., Setoguchi, Y. 2016. Development of an exhaled breath monitoring system with semiconductive gas sensors, a gas condenser unit, and gas chromatograph columns. Sensors, 16(11), 1891.
  • [8] Capuano, R., Santonico, M., Pennazza, G., Ghezzi, S., Martinelli, E., Roscioni, C., D’Amico, A. 2015. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs. Scientific Reports, 5(1), 16491.
  • [9] Peng, G., Hakim, M., Broza, Y., Billan, S., Abdah-Bortnyak, R., Kuten, A., Haick, H. 2010. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. British Journal of Cancer, 103(4), 542-551.
  • [10] Fu, X., Li, M., Knipp, R., Nantz, M., Bousamra, M. 2013. Noninvasive detection of lung cancer using exhaled breath. Cancer Medicine, 3(1), 174-181.
  • [11] Scheepers, M., Al-Difaie, Z., Brandts, L., Peeters, A., Grinsven, B., Bouvy, N. 2022. Diagnostic performance of electronic noses in cancer diagnoses using exhaled breath. Jama Network Open, 5(6), e2219372.
  • [12] Sakumura, Y., Koyama, Y., Tokutake, H., Hida, T., Sato, K., Itoh, T., Shin, W. 2017. Diagnosis by volatile organic compounds in exhaled breath from lung cancer patients using support vector machine algorithm. Sensors, 17(2), 287.
  • [13] Liu, T., Cui, Z., Li, X., Cui, H., Liu, Y. 2020. Al-doped MoSe2 monolayer as a promising biosensor for exhaled breath analysis: a dft study. Acs Omega, 6(1), 988-995.
  • [14] Noormohammadbeigi, M., Kamalinahad, S., Shamlouei, H. R., Mehr, F. I., Rajabi, R. 2023. In Silico Investigation of Al, Si and Ge Dopants Effect on Structural and Electrical Properties of Pristine B12N12 Nanocage Toward Acrolein Adsorption. Journal of Inorganic and Organometallic Polymers and Materials, 33(10), 3272-3281.
  • [15] Berisha, A. 2023. Unraveling the electronic influence and nature of covalent bonding of aryl and alkyl radicals on the B12N12 nanocage cluster. Scientific Reports, 13(1), 752.
  • [16] Wu, S., Li, L., Liang, Q., Gao, H., Tang, T., Tang, Y. 2023. A DFT study of sulforaphane adsorption on the group III nitrides (B12N12, Al12N12 and Ga12N12) nanocages. Journal of Biomolecular Structure and Dynamics, 1-12.
  • [17] Baei, M. 2013. Si‐doped B12N12 nanocage as an adsorbent for dissociation of N2O to N2 molecule. Heteroatom Chemistry, 24(6), 476-481.
  • [18] Sayhan, S. and Kinal, A. 2014. Stability of endohedral hydrogen doped boron nitride nanocages: a density functional theory study. Asian Journal of Chemistry, 26(18), 5935-5939.
  • [19] Silva, A. L. P., de Sousa Sousa, N., de Jesus Gomes Varela Júnior, J. 2023. Theoretical studies with B12N12 as a toxic gas sensor: a review. Journal of Nanoparticle Research, 25(1), 22.
  • [20] Souri, M. 2023. Density functional theory study of Ni-modified B12N12 nanocages as promising nonlinear optical materials. Chemical Physics Letters, 830(1), 140769.
  • [21] Roy, R. S., Banerjee, S., Ghosh, S., Ghosh, A., Das, A. K. 2024. A comparative study of electronic structure, adsorption properties, and optical responses of furan and tetrahydrofuran adsorbed pristine, Al and Ga doped B12X12 (X= N and P) nanocages. Journal of Molecular Structure, 1296(1), 136854.
  • [22] Huang, J., Mohammed, S. M., Alsaikhan, F., Mahdi, M. H., Adil, M., Khudair, S. A., Rushchitc, A. A. 2023. DFT study of D-Penicillamine adsorption on Al and Ga doped boron nitride (Al-B11N12 and Ga-B11N12) nanoclusters as drug delivery agents. Journal of Molecular Liquids, 383(1), 122056.
  • [23] Louis, H., Egemonye, T., Unimuke, T., Inah, B., Edet, H., Eno, E., Adeyinka, A. (2022). Detection of carbon, sulfur, and nitrogen dioxide pollutants with a 2D Ca12O12 nanostructured material. Acs Omega, 7(39), 34929-34943.
  • [24] Silva, A. and Júnior, J. 2022. Density functional theory study of cu-modified B12N12 nanocage as a chemical sensor for carbon monoxide gas. Inorganic Chemistry, 62(5), 1926-1934.
  • [25] Sarvestani, M. R. J., Vahed, S. A., Ahmadi, R. 2024. Cefalexin adsorption on the surface of pristine and Al-doped boron nitride nanocages (B12N12 and AlB11N12): A theoretical study. South African Journal of Chemical Engineering, 47(1), 60-66.
  • [26] Oishi, A. A., Dhali, P., Das, A., Mondal, S., Rad, A. S., Hasan, M. M. 2022. Study of the adsorption of chloropicrin on pure and Ga and Al doped B12N12: a comprehensive DFT and QTAIM investigation. Molecular Simulation, 48(9), 776-788.
  • [27] Soler J. M., Artacho E., Gale J. D., García A., Junquera J., Ordejón P., Sánchez-Portal D. 2002. The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11), pp. 2745–2779.
  • [28] Hohenberg P., Kohn W., 1964. Inhomogeneous electron gas. Physical Review, 136(3B), pp. B864- B872.
  • [29] Kohn W., Sham L. J., 1965. Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), pp. A1133- A1139.
  • [30] Perdew J. P., Burke K., Ernzerhof M., 1996. Generalized gradient approximation made simple. Physical Review Letters, 77(18), pp. 3865-3868.
  • [31] Monkhorst H. J., Pack J. D., 1976. Special points for Brillouin-zone integrations. Physical Review B, 13(12), pp. 5188-5192.
  • [32] Hamann, D. R., Schlüter, M., Chiang, C. 1979. Norm-conserving pseudopotentials. Physical Review Letters, 43(20), 1494.
  • [33] Grimme S., 2006. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of Computational Chemistry, 27(15), pp. 1787-1799.
  • [34] Momma K., Izumi F., 2011. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), pp. 1272-1276.
  • [35] Szary, M. J. 2024. Toward high selectivity of sensor arrays: Enhanced adsorption interaction and selectivity of gas detection (N2, O2, NO, CO, CO2, NO2, SO2, AlH3, NH3, and PH3) on transition metal dichalcogenides (MoS2, MoSe2, and MoTe2). Acta Materialia, 274, 120016.
  • [36] Enujekwu, F. M., Zhang, Y., Ezeh, C. I., Zhao, H., Xu, M., Besley, E., Wu, T. 2021. N-doping enabled defect-engineering of MoS2 for enhanced and selective adsorption of CO2: A DFT approach. Applied Surface Science, 542, 148556.
  • [37] Fonseca Guerra, C., Handgraaf, J. W., Baerends, E. J., Bickelhaupt, F. M. 2004. Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. Journal of Computational Chemistry, 25(2), 189-210.
There are 37 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other), Material Production Technologies
Journal Section Articles
Authors

Bahadır Salmankurt 0000-0001-7611-9647

Publication Date May 31, 2025
Submission Date November 17, 2024
Acceptance Date December 23, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Salmankurt, B. (2025). Theoretical Investigation of Al and Ga Doped B12N12 Nanocage for Detecting and Capturing Lung Cancer-Related Volatile Organic Compounds. Kocaeli Journal of Science and Engineering, 8(1), 52-59. https://doi.org/10.34088/kojose.1586949