Research Article
BibTex RIS Cite

ACCURACY ASSESSMENT TOWARD MERGING OF TERRESTRIAL LASER SCANNER POINT DATA AND UNMANNED AERIAL SYSTEM POINT DATA

Year 2023, , 124 - 135, 01.03.2023
https://doi.org/10.36306/konjes.1150611

Abstract

Terrestrial Laser Scanning (TLS) techniques are widely preferred for 3D models of small and large objects, buildings, and historical and cultural heritages. However, sometimes relying on a single method for 3D modelling an object/structure is insufficient to arrive at a solution or meet expectations. For example, Unmanned Aerial Systems (UAS) provide perspective for building roofs, while terrestrial laser scanners provide general information about building facades. In this research, several facades of a selected building could not be modelled using terrestrial laser scanning, and UAS was used to complete the missing data for 3D modelling. The transformation matrix, a linear function, is created to merge different data types. In the transformation matrix, the scale was found to be 1:1.012. The accuracy analysis of the produced 3D model was also made by comparing the spatial measurements taken from different building facades and the differences in the measurement values obtained from the 3D model and calculating statistically. According to the accuracy analysis results, the Root Mean Square Error (RMSE) value is approximately 3 cm. The results of the accuracy research, which are within the 95% confidence interval with the three-sigma rule, are approximately 2 cm as RMSE. As a result of the study, it was determined that the data obtained from UAV photogrammetry and the data obtained by the TLS technique could be combined, and the integrated 3D model obtained can be used more efficiently.

Supporting Institution

Konya Technical University Scientific Research Projects Coordinatorship

Project Number

191005034

References

  • [1] Lichti, D. D., W. Tredoux, R. Maalek, P. Helmholz and R. Radovanovic, "Modelling extreme wide‐angle lens cameras." The Photogrammetric Record, 2021.
  • [2] Karasaka, L., H. Karabörk, B. Makineci, A. Onurlu and G. İşler, "Indoor Surveying with Terrestral Photogrammetry: A Case Study for Sırçalı Masjid" 6: 810-817, 2018.
  • [3] Beyene, S. M., "Estimation of Forest Variable and Aboveground Biomass using Terrestrial Laser Scanning in the Tropical Rainforest." Journal of the Indian Society of Remote Sensing 48(6): 853-863, 2020.
  • [4] Wang, C., X. Xu, L. Yu, H. Li and J. B. H. Yap, "Grid algorithm for large-scale topographic oblique photogrammetry precision enhancement in vegetation coverage areas." Earth Science Informatics 14(2): 931-953, 2021.
  • [5] Kushwaha, S., K. R. Dayal, S. Raghavendra, H. Pande, P. S. Tiwari, S. Agrawal and S. Srivastava, 3D Digital documentation of a cultural heritage site using terrestrial laser scanner—A case study. Applications of Geomatics in Civil Engineering, Springer: 49-58, 2020.
  • [6] Shokri, D., H. Rastiveis, W. A. Sarasua, A. Shams and S. Homayouni, "A Robust and Efficient Method for Power Lines Extraction from Mobile LiDAR Point Clouds." PFG–Journal of Photogrammetry, Remote Sensing Geoinformation Science: 1-24, 2021.
  • [7] Ulvi, A., "Documentation, Three-Dimensional (3D) Modelling and visualization of cultural heritage by using Unmanned Aerial Vehicle (UAV) photogrammetry and terrestrial laser scanners." International Journal of Remote Sensing 42(6): 1994-2021, 2021.
  • [8] Herban, I. and C. B. Vilceanu, “Terrestrial laser scanning used for 3D modeling. 12th International Multidisciplinary Scientific GeoConference, 2012.
  • [9] Arıkan, D., F. Yıldız and H. B. Makineci, "Hava Lidarı Verilerine Uygulanan Farklı Enterpolasyon Yöntemlerinin Sam Doğruluğuna Etkisi, " Konya Mühendislik Bilimleri Dergisi 9(2): 377-394, 2021
  • [10] Deliry, S. I. and U. Avdan, "Accuracy of Unmanned Aerial Systems Photogrammetry and Structure from Motion in Surveying and Mapping: A Review." Journal of the Indian Society of Remote Sensing 49(8): 1997-2017, 2021
  • [11] Dhulkefl, E., A. Durdu and H. Terzioğlu, "DIJKSTRA ALGORITHM USING UAV PATH PLANNING." Konya Mühendislik Bilimleri Dergisi 8: 92-105, 2020
  • [12] Makineci, H. B., H. Karabörk and A. Durdu, "ANN estimation model for photogrammetry-based UAV flight planning optimisation." International Journal of Remote Sensing: 1-23, 2021.
  • [13] Wierzbicki, D., "Multi-camera imaging system for UAV photogrammetry." Sensors 18(8): 2433, 2018.
  • [14] Alfio, V. S., D. Costantino and M. Pepe, "Influence of Image TIFF Format and JPEG Compression Level in the Accuracy of the 3D Model and Quality of the Orthophoto in UAV Photogrammetry." Journal of Imaging 6(5): 30, 2020.
  • [15] Toprak, A. S., N. Polat and M. Uysal, "3D modeling of lion tombstones with UAV photogrammetry: a case study in ancient Phrygia (Turkey)." Archaeological Anthropological Sciences 11(5): 1973-1976, 2019.
  • [16] Pepe, M. and D. Costantino, "Uav photogrammetry and 3d modelling of complex architecture for maintenance purposes: The case study of the masonry bridge on the sele river, italy." Periodica Polytechnica Civil Engineering 65(1): 191-203, 2021.
  • [17] Makineci, H. B., H. Karabörk and A. Durdu, "Comparison of Digital Elevation Models Produced with Photogrammetric Usage of UAV by Geodetic Techniques." Türkiye Uzaktan Algılama Dergisi 2(2): 58-69, 2020.
  • [18] Makineci, H. B., and Karasaka, L., "Investigation of 3D models acquired with UAV oblique images". Turkish Journal of Geosciences, 2(2), 13-20, 2021.
  • [19] Karabörk, H., L. Karasaka, H. B. Makineci, A. Tanrıverdi, B. Yener, N. Ulutaş and F. N. Öztürk, "3D Modelling of Geometric Triangle Construction Elements in Indoor Spaces: A Case Study for Tahir and Zühre Masjid." International Journal of Environment Geoinformatics 6(1): 135-138, 2019.
  • [20] Šašak, J., M. Gallay, J. Kaňuk, J. Hofierka and J. Minár, "Combined use of terrestrial laser scanning and UAV photogrammetry in mapping alpine terrain." Remote Sensing 11(18): 2154, 2019.
  • [21] Yurtseven, H., "Comparison of GNSS-, TLS-and different altitude UAV-generated datasets on the basis of spatial differences." ISPRS International Journal of Geo-Information 8(4): 175, 2019.
  • [22] Bolkas, D., B. Naberezny and M. Jacobson, "Comparison of sUAS Photogrammetry and TLS for Detecting Changes in Soil Surface Elevations Following Deep Tillage." Journal of Surveying Engineering 147(2): 04021001, 2021.
  • [23] Hirt, P.-R., Y. Xu, L. Hoegner and U. Stilla, "Change Detection of Urban Trees in MLS Point Clouds Using Occupancy Grids." PFG–Journal of Photogrammetry, Remote Sensing Geoinformation Science: 1-18, 2021.
  • [24] Achille, C., A. Adami, S. Chiarini, S. Cremonesi, F. Fassi, L. Fregonese and L. Taffurelli, "UAV-based photogrammetry and integrated technologies for architectural applications—methodological strategies for the after-quake survey of vertical structures in Mantua (Italy)." Sensors 15(7): 15520-15539, 2015.
  • [25] Beg, A., Boyutlu Modellemede Yersel Lazer Tarama ve İnsansız Hava Araçları Verilerinin Entegrasyonu ve Kilistra Antik Kenti Örneği Master, Yüksek Lisans Tezi, TC Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya, 2018.
  • [26] Jo, Y. H. and S. Hong, "Three-dimensional digital documentation of cultural heritage site based on the convergence of terrestrial laser scanning and unmanned aerial vehicle photogrammetry." ISPRS International Journal of Geo-Information 8(2): 53, 2019.
  • [27] Valenti, R. and E. Paternò, "A comparison between TLS and UAV technologies for historical investigation." Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci 42(2): W9, 2019.
  • [28] Wijesingha, J., T. Moeckel, F. Hensgen and M. Wachendorf, "Evaluation of 3D point cloud-based models for the prediction of grassland biomass." International Journal of Applied Earth Observation Geoinformation 78: 352-359, 2019.
  • [29] Lussem, U., J. Schellberg and G. Bareth, "Monitoring forage mass with low-cost UAV data: case study at the Rengen grassland experiment." PFG–Journal of Photogrammetry, Remote Sensing Geoinformation Science 88(5): 407-422, 2020.
  • [30] Elkhrachy, I., "Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry." Alexandria Engineering Journal 60(6): 5579-5590, 2021.
  • [31] Jiménez-Jiménez, S. I., W. Ojeda-Bustamante, M. d. J. Marcial-Pablo and J. Enciso, "Digital Terrain Models Generated with Low-Cost UAV Photogrammetry: Methodology and Accuracy." ISPRS International Journal of Geo-Information 10(5): 285, 2021.
  • [32] Xiao, T., X. Wang, F. Deng and C. Heipke, "Sequential Cycle Consistency Inference for Eliminating Incorrect Relative Orientations in Structure from Motion." PFG–Journal of Photogrammetry, Remote Sensing Geoinformation Science: 1-17, 2021.

Yersel Lazer Tarayıcı Nokta Verileri ile İnsansız Hava Aracı Nokta Verilerinin Entegrasyonunda Doğruluk Değerlendirmesi

Year 2023, , 124 - 135, 01.03.2023
https://doi.org/10.36306/konjes.1150611

Abstract

Yersel Lazer Tarama (YLT) teknikleri, küçük ve büyük nesnelerin, binaların, tarihi ve kültürel mirasların 3 boyutlu modelleri için yaygın olarak tercih edilmektedir. Ancak bazen bir nesnenin/yapının 3B modellemesi için tek bir yönteme güvenmek, bir çözüme ulaşmak veya beklentileri karşılamak için yetersiz kalmaktadır. Örneğin, İnsansız Hava Sistemleri (İHA) bina çatıları için perspektif sağlarken, YLT sistemleri bina cepheleri hakkında kullanılabilir veri sağlamaktadır. Bu araştırmada, seçilen bir binanın, YLT kullanılarak modellenemeyen cephelerinde 3B modelleme için eksik verileri tamamlamak için İHA fotogrametri tekniği kullanılmıştır. Doğruluk değerlendirmesi analizi de 1.50 cm/pik Yer Örnekleme Aralığı (YÖA) uçuş irtifasında elde edilen görüntülerden elde edilen nokta verileri ile YLT tarafından üretilen nokta verileri birleştirilerek yapılmıştır. Farklı boyut ve kesitlerdeki tüm bina cephelerinden alınan yersel ölçümler ile 3B modelden elde edilen ölçüm değerlerindeki farklılıklar karşılaştırılarak ve istatistiksel olarak hesaplanarak doğruluk analizi yapılmıştır. Çalışmanın sonucu olarak İHA fotogrametrisinden elde edilen veriler ile YLT tekniği ile elde edilen verilerin bir araya getirilebilir olduğu ve elde edilen bütünleşik 3B modelin daha verimli kullanılabilir olduğu belirlenmiştir.

Project Number

191005034

References

  • [1] Lichti, D. D., W. Tredoux, R. Maalek, P. Helmholz and R. Radovanovic, "Modelling extreme wide‐angle lens cameras." The Photogrammetric Record, 2021.
  • [2] Karasaka, L., H. Karabörk, B. Makineci, A. Onurlu and G. İşler, "Indoor Surveying with Terrestral Photogrammetry: A Case Study for Sırçalı Masjid" 6: 810-817, 2018.
  • [3] Beyene, S. M., "Estimation of Forest Variable and Aboveground Biomass using Terrestrial Laser Scanning in the Tropical Rainforest." Journal of the Indian Society of Remote Sensing 48(6): 853-863, 2020.
  • [4] Wang, C., X. Xu, L. Yu, H. Li and J. B. H. Yap, "Grid algorithm for large-scale topographic oblique photogrammetry precision enhancement in vegetation coverage areas." Earth Science Informatics 14(2): 931-953, 2021.
  • [5] Kushwaha, S., K. R. Dayal, S. Raghavendra, H. Pande, P. S. Tiwari, S. Agrawal and S. Srivastava, 3D Digital documentation of a cultural heritage site using terrestrial laser scanner—A case study. Applications of Geomatics in Civil Engineering, Springer: 49-58, 2020.
  • [6] Shokri, D., H. Rastiveis, W. A. Sarasua, A. Shams and S. Homayouni, "A Robust and Efficient Method for Power Lines Extraction from Mobile LiDAR Point Clouds." PFG–Journal of Photogrammetry, Remote Sensing Geoinformation Science: 1-24, 2021.
  • [7] Ulvi, A., "Documentation, Three-Dimensional (3D) Modelling and visualization of cultural heritage by using Unmanned Aerial Vehicle (UAV) photogrammetry and terrestrial laser scanners." International Journal of Remote Sensing 42(6): 1994-2021, 2021.
  • [8] Herban, I. and C. B. Vilceanu, “Terrestrial laser scanning used for 3D modeling. 12th International Multidisciplinary Scientific GeoConference, 2012.
  • [9] Arıkan, D., F. Yıldız and H. B. Makineci, "Hava Lidarı Verilerine Uygulanan Farklı Enterpolasyon Yöntemlerinin Sam Doğruluğuna Etkisi, " Konya Mühendislik Bilimleri Dergisi 9(2): 377-394, 2021
  • [10] Deliry, S. I. and U. Avdan, "Accuracy of Unmanned Aerial Systems Photogrammetry and Structure from Motion in Surveying and Mapping: A Review." Journal of the Indian Society of Remote Sensing 49(8): 1997-2017, 2021
  • [11] Dhulkefl, E., A. Durdu and H. Terzioğlu, "DIJKSTRA ALGORITHM USING UAV PATH PLANNING." Konya Mühendislik Bilimleri Dergisi 8: 92-105, 2020
  • [12] Makineci, H. B., H. Karabörk and A. Durdu, "ANN estimation model for photogrammetry-based UAV flight planning optimisation." International Journal of Remote Sensing: 1-23, 2021.
  • [13] Wierzbicki, D., "Multi-camera imaging system for UAV photogrammetry." Sensors 18(8): 2433, 2018.
  • [14] Alfio, V. S., D. Costantino and M. Pepe, "Influence of Image TIFF Format and JPEG Compression Level in the Accuracy of the 3D Model and Quality of the Orthophoto in UAV Photogrammetry." Journal of Imaging 6(5): 30, 2020.
  • [15] Toprak, A. S., N. Polat and M. Uysal, "3D modeling of lion tombstones with UAV photogrammetry: a case study in ancient Phrygia (Turkey)." Archaeological Anthropological Sciences 11(5): 1973-1976, 2019.
  • [16] Pepe, M. and D. Costantino, "Uav photogrammetry and 3d modelling of complex architecture for maintenance purposes: The case study of the masonry bridge on the sele river, italy." Periodica Polytechnica Civil Engineering 65(1): 191-203, 2021.
  • [17] Makineci, H. B., H. Karabörk and A. Durdu, "Comparison of Digital Elevation Models Produced with Photogrammetric Usage of UAV by Geodetic Techniques." Türkiye Uzaktan Algılama Dergisi 2(2): 58-69, 2020.
  • [18] Makineci, H. B., and Karasaka, L., "Investigation of 3D models acquired with UAV oblique images". Turkish Journal of Geosciences, 2(2), 13-20, 2021.
  • [19] Karabörk, H., L. Karasaka, H. B. Makineci, A. Tanrıverdi, B. Yener, N. Ulutaş and F. N. Öztürk, "3D Modelling of Geometric Triangle Construction Elements in Indoor Spaces: A Case Study for Tahir and Zühre Masjid." International Journal of Environment Geoinformatics 6(1): 135-138, 2019.
  • [20] Šašak, J., M. Gallay, J. Kaňuk, J. Hofierka and J. Minár, "Combined use of terrestrial laser scanning and UAV photogrammetry in mapping alpine terrain." Remote Sensing 11(18): 2154, 2019.
  • [21] Yurtseven, H., "Comparison of GNSS-, TLS-and different altitude UAV-generated datasets on the basis of spatial differences." ISPRS International Journal of Geo-Information 8(4): 175, 2019.
  • [22] Bolkas, D., B. Naberezny and M. Jacobson, "Comparison of sUAS Photogrammetry and TLS for Detecting Changes in Soil Surface Elevations Following Deep Tillage." Journal of Surveying Engineering 147(2): 04021001, 2021.
  • [23] Hirt, P.-R., Y. Xu, L. Hoegner and U. Stilla, "Change Detection of Urban Trees in MLS Point Clouds Using Occupancy Grids." PFG–Journal of Photogrammetry, Remote Sensing Geoinformation Science: 1-18, 2021.
  • [24] Achille, C., A. Adami, S. Chiarini, S. Cremonesi, F. Fassi, L. Fregonese and L. Taffurelli, "UAV-based photogrammetry and integrated technologies for architectural applications—methodological strategies for the after-quake survey of vertical structures in Mantua (Italy)." Sensors 15(7): 15520-15539, 2015.
  • [25] Beg, A., Boyutlu Modellemede Yersel Lazer Tarama ve İnsansız Hava Araçları Verilerinin Entegrasyonu ve Kilistra Antik Kenti Örneği Master, Yüksek Lisans Tezi, TC Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya, 2018.
  • [26] Jo, Y. H. and S. Hong, "Three-dimensional digital documentation of cultural heritage site based on the convergence of terrestrial laser scanning and unmanned aerial vehicle photogrammetry." ISPRS International Journal of Geo-Information 8(2): 53, 2019.
  • [27] Valenti, R. and E. Paternò, "A comparison between TLS and UAV technologies for historical investigation." Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci 42(2): W9, 2019.
  • [28] Wijesingha, J., T. Moeckel, F. Hensgen and M. Wachendorf, "Evaluation of 3D point cloud-based models for the prediction of grassland biomass." International Journal of Applied Earth Observation Geoinformation 78: 352-359, 2019.
  • [29] Lussem, U., J. Schellberg and G. Bareth, "Monitoring forage mass with low-cost UAV data: case study at the Rengen grassland experiment." PFG–Journal of Photogrammetry, Remote Sensing Geoinformation Science 88(5): 407-422, 2020.
  • [30] Elkhrachy, I., "Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry." Alexandria Engineering Journal 60(6): 5579-5590, 2021.
  • [31] Jiménez-Jiménez, S. I., W. Ojeda-Bustamante, M. d. J. Marcial-Pablo and J. Enciso, "Digital Terrain Models Generated with Low-Cost UAV Photogrammetry: Methodology and Accuracy." ISPRS International Journal of Geo-Information 10(5): 285, 2021.
  • [32] Xiao, T., X. Wang, F. Deng and C. Heipke, "Sequential Cycle Consistency Inference for Eliminating Incorrect Relative Orientations in Structure from Motion." PFG–Journal of Photogrammetry, Remote Sensing Geoinformation Science: 1-17, 2021.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Lütfiye Karasaka 0000-0002-2804-3219

Hasan Bilgehan Makineci 0000-0003-3627-5826

Kasım Erdal 0000-0001-6024-7361

Project Number 191005034
Publication Date March 1, 2023
Submission Date August 9, 2022
Acceptance Date November 23, 2022
Published in Issue Year 2023

Cite

IEEE L. Karasaka, H. B. Makineci, and K. Erdal, “ACCURACY ASSESSMENT TOWARD MERGING OF TERRESTRIAL LASER SCANNER POINT DATA AND UNMANNED AERIAL SYSTEM POINT DATA”, KONJES, vol. 11, no. 1, pp. 124–135, 2023, doi: 10.36306/konjes.1150611.