Research Article
BibTex RIS Cite

Sıcak Presleme Ve Yüksek Sıcaklık Sinterleme Kombinasyonu İle Β Tipi Biyomedikal Ti74Nb26 Alaşımının Üretimi

Year 2020, Volume: 8 Issue: 2, 269 - 281, 03.06.2020
https://doi.org/10.36306/konjes.587790

Abstract

Ti-Nb alaşımları genellikle döküm yöntemi ile üretilirler. Saf Ti ve Nb’un erime sıcaklıkları oldukça
yüksek olduğundan döküm yoluyla Ti-Nb alaşımlarını üretmek maliyetlidir. Toz metalurjisi yöntemi ile
bu alaşımları çok daha düşük sıcaklıklarda (Ti erime sıcaklığından daha az) ve tamamen katı halde
ekonomik olarak üretmek mümkündür. Bu çalışmada Ti74Nb26 alaşımları saf Ti ve saf Nb tozları
kullanılarak, sıcak presleme ve yüksek sıcaklık sinterlemesinin ilk kez birlikte uygulanması ile
üretilmiştir. Üretim sürecinde uygulanan işlem sıcaklığı ve zamanının yoğunluk, mikroyapı ve mekanik
davranış üzerindeki etkileri araştırılmıştır. Yoğunluk ölçümleri, 800 °C'de yapılan sıcak presleme
işleminin tam yoğunluğu sağladığını göstermiştir. XRD ve SEM incelemeleri, sinterleme süresinin
artmasıyla birlikte β fazı oluşumunun arttığını ortaya koymuştur. Ana faz β'ya ilaveten, mikroyapıda az
miktarda α fazı ve çok az miktarda saf Nb gözlenmiştir. Mekanik özellikler tek eksenli basma ve mikro
Vickers sertlik testleri ile belirlenmiştir. Mekanik test sonuçları, 1200 °C'de 4 saatlik sinterlemenin en
yüksek sertlik (336 HV), elastik modül (44 GPa), akma mukavemeti (894 MPa) ve basma mukavemeti (1178
MPa) değerlerini sağladığını göstermiştir.

References

  • Andrade, D.P., Vasconcellos, L.M.R., Carvalho, I.C.S., Forte, L.F.B.P., Santos, E.L.S., Prado, R.F., Santos, D.R., Cairo, C.A.A., Carvalho, Y.R., 2015, “Titanium-35Niobium Alloy as a Potential Material for Biomedical Implants: In vitro Study”, Materials Science and Engineering C, Vol. 56, pp. 538-544. Bönisch M., Calin, M., Humbeeck, J.V., Skrotzki, W., Eckert, J., 2015, “Factors Influencing the Elastic Moduli, Reversible Strains and Hysteresis Loops in Martensitic Ti-Nb Alloys”, Materials Science and Engineering C, Vol. 48, pp. 511-520. Chai, Y.W., Kim, H.Y., Hosoda, H., Miyazaki, S., 2008, “Interfacial Defects in Ti-Nb Shape Memory Alloys”, Acta Materialia, Vol. 56, pp. 3088-3097. Chai, Y.W., Kim, H.Y., Hosoda, H., Miyazaki, S., 2009, “Self-accommodation in Ti-Nb Shape Memory Alloys”, Acta Materialia, Vol. 57, pp. 4054-4064. Cremasco, A., Ferreira, I., Caram R., 2010, “Effect of Heat Treatments on Mechanical Properties and Fatigue Behavior of Ti-35Nb Alloy Used as Biomaterial”, Materials Science Forum, Vol. 636- 637 pp. 68-75. Cremasco, A., Lopes, E.S.N., Cardoso, F.F., Contieri, R.J., Ferreira, I., Caram, R., 2013, “Effects of the Microstructural Characteristics of a Metastable β Ti Alloy on its Corrosion Fatigue Properties”, International Journal of Fatigue, Vol. 54, pp. 32-37. Elias, L.M., Schneider, S.G., Schneider, S., Silva, H.M., Malvisi, F., 2006, “Microstructural and Mechanical Characterization of Biomedical Ti-Nb-Zr (-Ta) Alloys”, Materials Science and Engineering A, Vol. 432, No. 1-2, pp. 108-112. Elmay, W., Patoor, E., Gloriant, T., Prima, F., Laheurte, P., 2014, “Improvement of Superelastic Performance of Ti-Nb Binary Alloys for Biomedical Applications”, Journal of Materials Engineering and Performance, Vol. 23, No. 7, pp. 2471-2476. Han, M.K., Kim, J.Y., Hwang, M.J., Song, H.J., Park Y.J., 2015, “Effect of Nb on the Microstructure, Mechanical Properties, Corrosion Behavior, and Cytotoxicity of Ti-Nb Alloys”, Materials, Vol. 8, No. 9, pp. 5986-6003. Hon, Y.H., Wang, J.Y., Pan, Y.N., 2003, “Composition/Phase Structure and Properties of Titanium- Niobium Alloys”, Materials Transactions, Vol. 44, No. 11, pp. 2384-2390. Kent, D., Wang, G., Dargusch, M., 2013, “Effects of Phase Stability and Processing on the Mechanical Properties of Ti-Nb based β Ti Alloys”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 28, pp. 15-25. Kim, H.Y., Kim, J.I., Inamura, T., Hosoda, H., Miyazaki, S., 2006, “Effect of Thermo-mechanical Treatment on Mechanical Properties and Shape Memory Behavior of Ti-(26-28) at.% Nb Alloys”, Materials Science and Engineering A, Vol. 438-440, pp. 839-843. Lee, C.M., Ju, C.P., Chern Lin, J.H., 2002, “Structure-property relationship of cast Ti-Nb alloys”, Journal of Oral Rehabilitation, Vol. 29, No. 4, pp. 314-322. Li, Y., Yang, C., Zhao, H., Qu, S., Li, X., Li, Y., 2014, “New Developments of Ti-based Alloys for Biomedical Applications”, Materials, Vol. 7, No. 3, pp. 1709-1800. Ma, J., Karaman, I., Maier H.J., Chumlyakov, Y.I., 2010, “Superelastic Cycling and Room Temperature Recovery of Ti74Nb26 Shape Memory Alloy”, Acta Materialia, Vol. 58, pp. 2216-2224. McMahon, R.E., Ma, J., Verkhoturov, S.V., Munoz-Pinto, D., Karaman, I., Rubitschek, F., Maier, H.J., Hahn, M.S., 2012, “A Comparative Study of the Cytotoxicity and Corrosion Resistance of Nickel- Titanium and Titanium-Niobium Shape Memory Alloys”, Acta Biomaterialia, Vol. 8, No. 7, pp. 2863-2870. Niinomi, M., Nakai, M., Hieda, J., 2012, “Development of New Metallic Alloys for Biomedical Applications”, Acta Biomaterialia, Vol. 8, No. 11, pp. 3888-3903. Ozaki, T., Matsumoto, H., Watanabe, S., Hanada, S., 2004, “Beta Ti Alloys with Low Young’s Modulus”, Materials Transactions, Vol. 45, No. 8, pp. 2776-2779. Prokoshkin, S., Brailovski, V., Dubinskiy, S., Zhukova, Y., Sheremetyev, V., Konopatsky, A., Inaekyan, K., 2016, “Manufacturing, Structure Control, and Functional Testing of Ti-Nb-Based SMA for Medical Application”, Shape Memory and Superelasticity, Vol. 2, No. 2, pp. 130-144. Santos, D.R., Henriques, V.A.R., Cairo, C.A.A., Pereira, M.S., 2005, “Production of a Low Young Modulus Titanium Alloy by Powder Metallurgy”, Materials Research, Vol. 8, No. 4, pp. 439-442. Sharma, B., Vajpai, S.K., Ameyama, K., 2016, “Microstructure and Properties of Beta Ti-Nb Alloy Prepared by Powder Metallurgy Route Using Titanium Hydride Powder”, Journal of Alloys and Compounds, Vol. 656, pp. 978-986. Shymanski, V.I., Cherenda, N.N., Uglov, V.V., Astashynski, V.M., Kuzmitski, A.M., 2015, “Structure and Phase Composition of Nb/Ti System Subjected to Compression Plasma Flow Impact”, Surface & Coatings Technology, Vol. 278, pp. 183-189. Wang, Y.B., Zheng, Y.F., 2009, “Corrosion Behaviour and Biocompatibility Evaluation of Low Modulus Ti-16Nb Shape Memory Alloy as Potential Biomaterial”, Materials Letters, Vol. 63, pp. 1293-1295. Zhao, D., Chang, K., Ebel, T., Qian, M., Willumeit, R., Yan, M., Pyczak, F., 2013, “Microstructure and Mechanical Behavior of Metal Injection Molded Ti-Nb Binary Alloys as Biomedical Material”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 28, pp. 171-182. Zhao, D., Chang, K., Ebel, T., Nie, H., Willumeit, R., Pyczak, F., 2015, “Sintering Behavior and Mechanical Properties of a Metal Injection Molded Ti-Nb Binary Alloy as Biomaterial”, Journal of Alloys and Compounds, Vol. 640, pp. 393-400. Zhuravleva, K., Bönisch, M., Prashanth, K.G., Hempel, U., Helth, A., Gemming, T., Calin, M., Scudino, S., Schultz, L., Eckert, J., Gebert, A., 2013, “Production of Porous β-Type Ti-40Nb Alloy for Biomedical Applications: Comparison of Selective Laser Melting and Hot Pressing”, Materials, Vol. 6, No. 12, pp. 5700-5712.

PROCESSING OF β-TYPE BIOMEDICAL Ti74Nb26 ALLOY BY COMBINATION OF HOT PRESSING AND HIGH TEMPERATURE SINTERING

Year 2020, Volume: 8 Issue: 2, 269 - 281, 03.06.2020
https://doi.org/10.36306/konjes.587790

Abstract

Titanium (Ti)-Niobium (Nb) alloys are generally produced by casting methods. Since the
melting temperatures of pure Ti and Nb are quite high, their fabrication by casting techniques is costly.
On the other hand, it is possible to produce these alloys economically at much lower temperatures (less
than melting temperature of Ti), completely in solid state using powder metallurgy. In the present study,
Ti74Nb26 alloys were produced using pure Ti and pure Nb powders by combination of hot pressing and
high temperature sintering for the first time. The influences of processing temperature and time on
density, microstructure, and mechanical behavior were investigated. Density measurements showed that
hot pressing at 800 °C provided full density. XRD and SEM investigations revealed that amount of β phase
formed increased with increasing sintering time. In addition to main phase β, little amount of α phase and
a very small amount of pure Nb were observed in the microstructure. Mechanical properties were
measured by means of uniaxial compression and micro Vickers indentation tests. The results indicated
that 4 h of sintering at 1200 °C exhibited the highest value of hardness (336 HV), elastic modulus (44 GPa),
yield strength (894 MPa), and compressive strength (1178 MPa).

References

  • Andrade, D.P., Vasconcellos, L.M.R., Carvalho, I.C.S., Forte, L.F.B.P., Santos, E.L.S., Prado, R.F., Santos, D.R., Cairo, C.A.A., Carvalho, Y.R., 2015, “Titanium-35Niobium Alloy as a Potential Material for Biomedical Implants: In vitro Study”, Materials Science and Engineering C, Vol. 56, pp. 538-544. Bönisch M., Calin, M., Humbeeck, J.V., Skrotzki, W., Eckert, J., 2015, “Factors Influencing the Elastic Moduli, Reversible Strains and Hysteresis Loops in Martensitic Ti-Nb Alloys”, Materials Science and Engineering C, Vol. 48, pp. 511-520. Chai, Y.W., Kim, H.Y., Hosoda, H., Miyazaki, S., 2008, “Interfacial Defects in Ti-Nb Shape Memory Alloys”, Acta Materialia, Vol. 56, pp. 3088-3097. Chai, Y.W., Kim, H.Y., Hosoda, H., Miyazaki, S., 2009, “Self-accommodation in Ti-Nb Shape Memory Alloys”, Acta Materialia, Vol. 57, pp. 4054-4064. Cremasco, A., Ferreira, I., Caram R., 2010, “Effect of Heat Treatments on Mechanical Properties and Fatigue Behavior of Ti-35Nb Alloy Used as Biomaterial”, Materials Science Forum, Vol. 636- 637 pp. 68-75. Cremasco, A., Lopes, E.S.N., Cardoso, F.F., Contieri, R.J., Ferreira, I., Caram, R., 2013, “Effects of the Microstructural Characteristics of a Metastable β Ti Alloy on its Corrosion Fatigue Properties”, International Journal of Fatigue, Vol. 54, pp. 32-37. Elias, L.M., Schneider, S.G., Schneider, S., Silva, H.M., Malvisi, F., 2006, “Microstructural and Mechanical Characterization of Biomedical Ti-Nb-Zr (-Ta) Alloys”, Materials Science and Engineering A, Vol. 432, No. 1-2, pp. 108-112. Elmay, W., Patoor, E., Gloriant, T., Prima, F., Laheurte, P., 2014, “Improvement of Superelastic Performance of Ti-Nb Binary Alloys for Biomedical Applications”, Journal of Materials Engineering and Performance, Vol. 23, No. 7, pp. 2471-2476. Han, M.K., Kim, J.Y., Hwang, M.J., Song, H.J., Park Y.J., 2015, “Effect of Nb on the Microstructure, Mechanical Properties, Corrosion Behavior, and Cytotoxicity of Ti-Nb Alloys”, Materials, Vol. 8, No. 9, pp. 5986-6003. Hon, Y.H., Wang, J.Y., Pan, Y.N., 2003, “Composition/Phase Structure and Properties of Titanium- Niobium Alloys”, Materials Transactions, Vol. 44, No. 11, pp. 2384-2390. Kent, D., Wang, G., Dargusch, M., 2013, “Effects of Phase Stability and Processing on the Mechanical Properties of Ti-Nb based β Ti Alloys”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 28, pp. 15-25. Kim, H.Y., Kim, J.I., Inamura, T., Hosoda, H., Miyazaki, S., 2006, “Effect of Thermo-mechanical Treatment on Mechanical Properties and Shape Memory Behavior of Ti-(26-28) at.% Nb Alloys”, Materials Science and Engineering A, Vol. 438-440, pp. 839-843. Lee, C.M., Ju, C.P., Chern Lin, J.H., 2002, “Structure-property relationship of cast Ti-Nb alloys”, Journal of Oral Rehabilitation, Vol. 29, No. 4, pp. 314-322. Li, Y., Yang, C., Zhao, H., Qu, S., Li, X., Li, Y., 2014, “New Developments of Ti-based Alloys for Biomedical Applications”, Materials, Vol. 7, No. 3, pp. 1709-1800. Ma, J., Karaman, I., Maier H.J., Chumlyakov, Y.I., 2010, “Superelastic Cycling and Room Temperature Recovery of Ti74Nb26 Shape Memory Alloy”, Acta Materialia, Vol. 58, pp. 2216-2224. McMahon, R.E., Ma, J., Verkhoturov, S.V., Munoz-Pinto, D., Karaman, I., Rubitschek, F., Maier, H.J., Hahn, M.S., 2012, “A Comparative Study of the Cytotoxicity and Corrosion Resistance of Nickel- Titanium and Titanium-Niobium Shape Memory Alloys”, Acta Biomaterialia, Vol. 8, No. 7, pp. 2863-2870. Niinomi, M., Nakai, M., Hieda, J., 2012, “Development of New Metallic Alloys for Biomedical Applications”, Acta Biomaterialia, Vol. 8, No. 11, pp. 3888-3903. Ozaki, T., Matsumoto, H., Watanabe, S., Hanada, S., 2004, “Beta Ti Alloys with Low Young’s Modulus”, Materials Transactions, Vol. 45, No. 8, pp. 2776-2779. Prokoshkin, S., Brailovski, V., Dubinskiy, S., Zhukova, Y., Sheremetyev, V., Konopatsky, A., Inaekyan, K., 2016, “Manufacturing, Structure Control, and Functional Testing of Ti-Nb-Based SMA for Medical Application”, Shape Memory and Superelasticity, Vol. 2, No. 2, pp. 130-144. Santos, D.R., Henriques, V.A.R., Cairo, C.A.A., Pereira, M.S., 2005, “Production of a Low Young Modulus Titanium Alloy by Powder Metallurgy”, Materials Research, Vol. 8, No. 4, pp. 439-442. Sharma, B., Vajpai, S.K., Ameyama, K., 2016, “Microstructure and Properties of Beta Ti-Nb Alloy Prepared by Powder Metallurgy Route Using Titanium Hydride Powder”, Journal of Alloys and Compounds, Vol. 656, pp. 978-986. Shymanski, V.I., Cherenda, N.N., Uglov, V.V., Astashynski, V.M., Kuzmitski, A.M., 2015, “Structure and Phase Composition of Nb/Ti System Subjected to Compression Plasma Flow Impact”, Surface & Coatings Technology, Vol. 278, pp. 183-189. Wang, Y.B., Zheng, Y.F., 2009, “Corrosion Behaviour and Biocompatibility Evaluation of Low Modulus Ti-16Nb Shape Memory Alloy as Potential Biomaterial”, Materials Letters, Vol. 63, pp. 1293-1295. Zhao, D., Chang, K., Ebel, T., Qian, M., Willumeit, R., Yan, M., Pyczak, F., 2013, “Microstructure and Mechanical Behavior of Metal Injection Molded Ti-Nb Binary Alloys as Biomedical Material”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 28, pp. 171-182. Zhao, D., Chang, K., Ebel, T., Nie, H., Willumeit, R., Pyczak, F., 2015, “Sintering Behavior and Mechanical Properties of a Metal Injection Molded Ti-Nb Binary Alloy as Biomaterial”, Journal of Alloys and Compounds, Vol. 640, pp. 393-400. Zhuravleva, K., Bönisch, M., Prashanth, K.G., Hempel, U., Helth, A., Gemming, T., Calin, M., Scudino, S., Schultz, L., Eckert, J., Gebert, A., 2013, “Production of Porous β-Type Ti-40Nb Alloy for Biomedical Applications: Comparison of Selective Laser Melting and Hot Pressing”, Materials, Vol. 6, No. 12, pp. 5700-5712.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Tarık Aydoğmuş 0000-0002-0928-5095

Nuaman Jasim Filamarz Al-zangana This is me

Fevzi Kelen

Publication Date June 3, 2020
Submission Date July 5, 2019
Acceptance Date November 6, 2019
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

IEEE T. Aydoğmuş, N. J. F. Al-zangana, and F. Kelen, “PROCESSING OF β-TYPE BIOMEDICAL Ti74Nb26 ALLOY BY COMBINATION OF HOT PRESSING AND HIGH TEMPERATURE SINTERING”, KONJES, vol. 8, no. 2, pp. 269–281, 2020, doi: 10.36306/konjes.587790.