Research Article
BibTex RIS Cite

SYNTHESIS OF QUASI-SPHERICAL SILVER NANOPARTICLES BY CHEMICAL REDUCTION ROUTE USING DIFFERENT REDUCING AGENTS

Year 2020, Volume: 8 Issue: 4, 828 - 838, 01.12.2020
https://doi.org/10.36306/konjes.700622

Abstract

Silver nanoparticles (AgNPs) have a great potential for molecular detection applications such as surface enhanced Raman spectroscopy (SERS) thanks to their surface plasmon resonance (SPR) property. SPR of AgNPs are closely related to the size, size distribution, aggregation state and shape of these particles. Therefore, in order to obtain optimum enhancement of SERS signals, it is crucial to be able to synthesize AgNPs with controllable size and shape. In this study, AgNPs were synthesized by chemical reduction method using three different reducing agents: trisodium citrate (TSC), ascorbic acid (AA) and hydroxylamine hydrochloride (HH). The synthesized AgNPs were compared in terms of their particle shape, size, size distribution and aggregation state. Accordingly, using 34 mM TSC as a reducing agent resulted in mostly quasi-spherical nanoparticles with an average size of 71.6  20.9 nm. However, some nanorods and triangular nanoparticles were also observed in this sample. In case of using HH as reducing agent, the addition sequence of chemicals into the reaction mixture affected the size and the aggregation state of AgNPs significantly. A bimodal size distribution of mostly quasi-spherical nanoparticles with average sizes of 8.1  4.1 and 60.1  21.5 nm were obtained when HH/NaOH solution was added to AgNO3. When AA was used as a reducing agent, relatively larger quasi-spherical AgNPs with a lower polydispersity and an average size of 78.0  22.2 nm were synthesized.

References

  • Amendola, Vincenzo. 2016. 'Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method', Physical Chemistry Chemical Physics, 18: 2230-41.
  • Bhui, D. K., H. Bar, P. Sarkar, G. P. Sahoo, S. P. De, and A. Misra. 2009. 'Synthesis and UV-vis spectroscopic study of silver nanoparticles in aqueous SDS solution', Journal of Molecular Liquids, 145: 33-37.
  • Chaudhari, Kamalesh, Tripti Ahuja, Vasanthanarayan Murugesan, Vidhya Subramanian, Mohd Azhardin Ganayee, Thomas Thundat, and Thalappil Pradeep. 2019. 'Appearance of SERS activity in single silver nanoparticles by laser-induced reshaping', Nanoscale, 11: 321-30.
  • Das, R., S. S. Nath, D. Chakdar, G. Gope, and R. Bhattacharjee. 2010. 'Synthesis of silver nanoparticles and their optical properties', Journal of Experimental Nanoscience, 5: 357-62.
  • Garrido, C., B. E. Weiss-Lopez, and M. M. C. Vallette. 2016. 'Surface-enhanced Raman scattering activity of negatively charged bio-analytes from a modified silver colloid', Spectroscopy Letters, 49: 11-18.
  • Hu, M., J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia. 2006. 'Gold nanostructures: engineering their plasmonic properties for biomedical applications', Chemical Society Reviews, 35: 1084-94.
  • Hutter, E., and J. H. Fendler. 2004. 'Exploitation of localized surface plasmon resonance', Advanced Materials, 16: 1685-706.
  • Ingle, J.D., and S.R. Crouch. 1988. Spectrochemical Analysis (Prentice Hall: Englewood Cliffs, NJ).
  • Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz. 2003. 'The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment', Journal of Physical Chemistry B, 107: 668- 77.
  • Kreibig, Uwe, and Michael Vollmer. 1995. Optical properties of metal clusters (Springer: Berlin; New York).
  • Lee, P. C., and D. Meisel. 1982. 'Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols', Journal of Physical Chemistry, 86: 3391-95.
  • Lee, S. H., and B. H. Jun. 2019. 'Silver Nanoparticles: Synthesis and Application for Nanomedicine', International Journal of Molecular Sciences, 20.
  • Leopold, N., and B. Lendl. 2003. 'A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride', Journal of Physical Chemistry B, 107: 5723-27.
  • Li, H. S., H. B. Xia, D. Y. Wang, and X. T. Tao. 2013. 'Simple Synthesis of Monodisperse, Quasi-spherical, Citrate-Stabilized Silver Nanocrystals in Water', Langmuir, 29: 5074-79.
  • Maher, Robert C. 2012. 'SERS Hot Spots.' in Challa S. S. R. Kumar (ed.), Raman Spectroscopy for Nanomaterials Characterization (Springer Berlin Heidelberg: Berlin, Heidelberg).
  • Meng, W., F. Hu, X. H. Jiang, and L. D. Lu. 2015. 'Preparation of silver colloids with improved uniformity and stable surface-enhanced Raman scattering', Nanoscale Research Letters, 10: 1-8.
  • Pang, Ran, De-Yin Wu, and Zhong-Qun Tian. 2018. 'Density Functional Theoretical Studies on Chemical Enhancement of Surface-Enhanced Raman Spectroscopy in Electrochemical Interfaces.' in Marek J. Wójcik, Hiroshi Nakatsuji, Bernard Kirtman and Yukihiro Ozaki (eds.), Frontiers of Quantum Chemistry (Springer Singapore: Singapore).
  • Petryayeva, E., and U. J. Krull. 2011. 'Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review', Analytica Chimica Acta, 706: 8-24.
  • Pyatenko, A., M. Yamaguchi, and M. Suzuki. 2007. 'Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions', Journal of Physical Chemistry C, 111: 7910-17.
  • Qin, Y. Q., X. H. Ji, J. Jing, H. Liu, H. L. Wu, and W. S. Yang. 2010. 'Size control over spherical silver nanoparticles by ascorbic acid reduction', Colloids and Surfaces a-Physicochemical and Engineering Aspects, 372: 172-76.
  • Ranoszek-Soliwoda, K., E. Tomaszewska, E. Socha, P. Krzyczmonik, A. Ignaczak, P. Orlowski, M. Krzyzowska, G. Celichowski, and J. Grobelny. 2017. 'The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles', Journal of Nanoparticle Research, 19.
  • Roy, Anupam, Onur Bulut, Sudip Some, Amit Kumar Mandal, and M. Deniz Yilmaz. 2019. 'Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity', Rsc Advances, 9: 2673-702.
  • Sharma, B., R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne. 2012. 'SERS: Materials, applications, and the future', Materials Today, 15: 16-25.
  • Stamplecoskie, K. G., J. C. Scaiano, V. S. Tiwari, and H. Anis. 2011. 'Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy', Journal of Physical Chemistry C, 115: 1403-09.
  • Starowicz, Z., R. Wojnarowska-Nowak, P. Ozga, and E. M. Sheregii. 2018. 'The tuning of the plasmon resonance of the metal nanoparticles in terms of the SERS effect', Colloid and Polymer Science, 296: 1029-37.
  • Vanamudan, A., and P. Pamidimukkala. 2015. 'Chitosan, nanoclay and chitosan-nanoclay composite as adsorbents for Rhodamine-6G and the resulting optical properties', International Journal of Biological Macromolecules, 74: 127-35.
  • Xu, Gang, Yong Chen, Masato Tazawa, and Ping Jin. 2006. 'Surface Plasmon Resonance of Silver Nanoparticles on Vanadium Dioxide', The Journal of Physical Chemistry B, 110: 2051-56.
  • Yaffe, N. R., A. Ingram, D. Graham, and E. W. Blanch. 2010. 'A multi-component optimisation of experimental parameters for maximising SERS enhancements', Journal of Raman Spectroscopy, 41: 618-23.
  • Zhang, X. F., Z. G. Liu, W. Shen, and S. Gurunathan. 2016. 'Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches', International Journal of Molecular Sciences, 17.
  • Zhang, Zhi, Wenfei Shen, Jing Xue, Yuanmeng Liu, Yanwei Liu, Peipei Yan, Jixian Liu, and Jianguo Tang. 2018. 'Recent advances in synthetic methods and applications of silver nanostructures', Nanoscale Research Letters, 13: 54.

Yarı Küresel Gümüş Nanopartiküllerin Farklı İndirgeyiciler Kullanarak Kimyasal İndirgeme Yöntemiyle Sentezi

Year 2020, Volume: 8 Issue: 4, 828 - 838, 01.12.2020
https://doi.org/10.36306/konjes.700622

Abstract

Gümüş nanopartiküller, yüzey plazmon rezonans özellikleri sayesinde yüzeyde güçlendirilmiş Raman spektroskopisi (SERS) gibi moleküler tespit uygulamaları için büyük bir potansiyele sahiptir.
Gümüş nanopartiküllerin yüzey plazmon rezonansı tane boyutu, boyut dağılımı, agregasyon derecesi ve tane şekli ile yakından ilişkilidir. Bu nedenle, SERS sinyallerinde optimum güçlendirmenin elde edilebilmesi için gümüş nanopartiküllerin şekil ve boyut kontrollü sentezi büyük önem taşımaktadır. Bu çalışmada, gümüş nanopartiküller üç farklı indirgeyici (trisodyum sitrat (TSC), askorbik asit (AA) and hidroksilamin hidroklorür (HH)) kullanarak kimyasal indirgeme yoluyla sentezlenmiştir. Sentezlenen gümüş nanopartiküller, tane şekli, boyutu, boyut dağılımı ve agregasyon/aglomerasyon derecesi açısından karşılaştırılmıştır. Buna göre, 34 mM TSC’nin indirgeyici olarak kullanıldığı durumda çoğunlukla yarı-küresel şekilli, ortalama tane boyutu 71.6  20.9 nm olan gümüş nanopartiküller elde edilmiştir. Bununla birlikte, yarı-küresel tanelerin yanı sıra, az sayıda da olsa nano-çubuk ve üçgensel nanopartiküller oluştuğu da görülmüştür. İndirgeyici olarak HH kullanıldığında, kimyasalların reaksiyon karışımına eklenme sıralaması nanopartiküllerin tane boyutunu ve aglomerasyon derecesini önemli ölçüde etkilemiştir. HH/NaOH çözeltisinin AgNO3 çözeltisi üzerine eklenmesi durumunda, ortalama tane boyutu 8.1  4.1 ve 60.1  21.5 nm olan iki farklı tane boyut dağılımına sahip yarı-küresel gümüş nanopartiküller elde edilmiştir. İndirgeyici olarak AA kullanıldığında ise, diğer numunelere kıyasla nispeten daha büyük ortalama tane boyutuna (78.0  22.2 nm); ancak, daha dar tane boyut dağılımına sahip yarı-küresel gümüş nanopartiküller sentezlenmiştir.

References

  • Amendola, Vincenzo. 2016. 'Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method', Physical Chemistry Chemical Physics, 18: 2230-41.
  • Bhui, D. K., H. Bar, P. Sarkar, G. P. Sahoo, S. P. De, and A. Misra. 2009. 'Synthesis and UV-vis spectroscopic study of silver nanoparticles in aqueous SDS solution', Journal of Molecular Liquids, 145: 33-37.
  • Chaudhari, Kamalesh, Tripti Ahuja, Vasanthanarayan Murugesan, Vidhya Subramanian, Mohd Azhardin Ganayee, Thomas Thundat, and Thalappil Pradeep. 2019. 'Appearance of SERS activity in single silver nanoparticles by laser-induced reshaping', Nanoscale, 11: 321-30.
  • Das, R., S. S. Nath, D. Chakdar, G. Gope, and R. Bhattacharjee. 2010. 'Synthesis of silver nanoparticles and their optical properties', Journal of Experimental Nanoscience, 5: 357-62.
  • Garrido, C., B. E. Weiss-Lopez, and M. M. C. Vallette. 2016. 'Surface-enhanced Raman scattering activity of negatively charged bio-analytes from a modified silver colloid', Spectroscopy Letters, 49: 11-18.
  • Hu, M., J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia. 2006. 'Gold nanostructures: engineering their plasmonic properties for biomedical applications', Chemical Society Reviews, 35: 1084-94.
  • Hutter, E., and J. H. Fendler. 2004. 'Exploitation of localized surface plasmon resonance', Advanced Materials, 16: 1685-706.
  • Ingle, J.D., and S.R. Crouch. 1988. Spectrochemical Analysis (Prentice Hall: Englewood Cliffs, NJ).
  • Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz. 2003. 'The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment', Journal of Physical Chemistry B, 107: 668- 77.
  • Kreibig, Uwe, and Michael Vollmer. 1995. Optical properties of metal clusters (Springer: Berlin; New York).
  • Lee, P. C., and D. Meisel. 1982. 'Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols', Journal of Physical Chemistry, 86: 3391-95.
  • Lee, S. H., and B. H. Jun. 2019. 'Silver Nanoparticles: Synthesis and Application for Nanomedicine', International Journal of Molecular Sciences, 20.
  • Leopold, N., and B. Lendl. 2003. 'A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride', Journal of Physical Chemistry B, 107: 5723-27.
  • Li, H. S., H. B. Xia, D. Y. Wang, and X. T. Tao. 2013. 'Simple Synthesis of Monodisperse, Quasi-spherical, Citrate-Stabilized Silver Nanocrystals in Water', Langmuir, 29: 5074-79.
  • Maher, Robert C. 2012. 'SERS Hot Spots.' in Challa S. S. R. Kumar (ed.), Raman Spectroscopy for Nanomaterials Characterization (Springer Berlin Heidelberg: Berlin, Heidelberg).
  • Meng, W., F. Hu, X. H. Jiang, and L. D. Lu. 2015. 'Preparation of silver colloids with improved uniformity and stable surface-enhanced Raman scattering', Nanoscale Research Letters, 10: 1-8.
  • Pang, Ran, De-Yin Wu, and Zhong-Qun Tian. 2018. 'Density Functional Theoretical Studies on Chemical Enhancement of Surface-Enhanced Raman Spectroscopy in Electrochemical Interfaces.' in Marek J. Wójcik, Hiroshi Nakatsuji, Bernard Kirtman and Yukihiro Ozaki (eds.), Frontiers of Quantum Chemistry (Springer Singapore: Singapore).
  • Petryayeva, E., and U. J. Krull. 2011. 'Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review', Analytica Chimica Acta, 706: 8-24.
  • Pyatenko, A., M. Yamaguchi, and M. Suzuki. 2007. 'Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions', Journal of Physical Chemistry C, 111: 7910-17.
  • Qin, Y. Q., X. H. Ji, J. Jing, H. Liu, H. L. Wu, and W. S. Yang. 2010. 'Size control over spherical silver nanoparticles by ascorbic acid reduction', Colloids and Surfaces a-Physicochemical and Engineering Aspects, 372: 172-76.
  • Ranoszek-Soliwoda, K., E. Tomaszewska, E. Socha, P. Krzyczmonik, A. Ignaczak, P. Orlowski, M. Krzyzowska, G. Celichowski, and J. Grobelny. 2017. 'The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles', Journal of Nanoparticle Research, 19.
  • Roy, Anupam, Onur Bulut, Sudip Some, Amit Kumar Mandal, and M. Deniz Yilmaz. 2019. 'Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity', Rsc Advances, 9: 2673-702.
  • Sharma, B., R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne. 2012. 'SERS: Materials, applications, and the future', Materials Today, 15: 16-25.
  • Stamplecoskie, K. G., J. C. Scaiano, V. S. Tiwari, and H. Anis. 2011. 'Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy', Journal of Physical Chemistry C, 115: 1403-09.
  • Starowicz, Z., R. Wojnarowska-Nowak, P. Ozga, and E. M. Sheregii. 2018. 'The tuning of the plasmon resonance of the metal nanoparticles in terms of the SERS effect', Colloid and Polymer Science, 296: 1029-37.
  • Vanamudan, A., and P. Pamidimukkala. 2015. 'Chitosan, nanoclay and chitosan-nanoclay composite as adsorbents for Rhodamine-6G and the resulting optical properties', International Journal of Biological Macromolecules, 74: 127-35.
  • Xu, Gang, Yong Chen, Masato Tazawa, and Ping Jin. 2006. 'Surface Plasmon Resonance of Silver Nanoparticles on Vanadium Dioxide', The Journal of Physical Chemistry B, 110: 2051-56.
  • Yaffe, N. R., A. Ingram, D. Graham, and E. W. Blanch. 2010. 'A multi-component optimisation of experimental parameters for maximising SERS enhancements', Journal of Raman Spectroscopy, 41: 618-23.
  • Zhang, X. F., Z. G. Liu, W. Shen, and S. Gurunathan. 2016. 'Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches', International Journal of Molecular Sciences, 17.
  • Zhang, Zhi, Wenfei Shen, Jing Xue, Yuanmeng Liu, Yanwei Liu, Peipei Yan, Jixian Liu, and Jianguo Tang. 2018. 'Recent advances in synthetic methods and applications of silver nanostructures', Nanoscale Research Letters, 13: 54.
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ayşe Kurt This is me 0000-0002-6032-7190

Yasemin Çelik 0000-0003-3993-6095

Publication Date December 1, 2020
Submission Date March 8, 2020
Acceptance Date July 16, 2020
Published in Issue Year 2020 Volume: 8 Issue: 4

Cite

IEEE A. Kurt and Y. Çelik, “SYNTHESIS OF QUASI-SPHERICAL SILVER NANOPARTICLES BY CHEMICAL REDUCTION ROUTE USING DIFFERENT REDUCING AGENTS”, KONJES, vol. 8, no. 4, pp. 828–838, 2020, doi: 10.36306/konjes.700622.

Cited By

ELECTROCONDUCTIVE POLYAMIDE FIBERS WITH GREEN SYNTHESIZED SILVER NANOPARTICLES
Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi
https://doi.org/10.17780/ksujes.1149666