Research Article
BibTex RIS Cite

ARAÇ SÜSPANSİYON SİSTEMİNİN NÜMERİK ve DENEYSEL DİNAMİK ANALİZİ

Year 2021, Volume: 9 Issue: 1, 85 - 105, 02.03.2021
https://doi.org/10.36306/konjes.778390

Abstract

Bu çalışmada bir binek araç süspansiyon sisteminin nümerik ve deneysel dinamik analizi incelenmiştir. Öncelikle gerçek bir araca ait MacPherson tip süspansiyon sisteminin matematiksel modeli Newton-Lagrange yasaları, MATLAB/Simulink/SimMechanics yazılımı ve katı model kullanılarak oluşturulmuştur. Farklı modelleme yaklaşımlarından elde edilen sistemin hareket davranışları farklı yol girdilerine göre simule edilmiş ve modelleme sonuçları karşılaştırılmıştır. Modelleme çalışmalarının doğrulanması amacı ile gerçek bir aracın hem ön hem arka süspansiyon sisteminin dinamik davranışı deneysel olarak ölçülmüştür. Deneysel çalışmalarda yol girdisine göre aracın deplasman davranışının ölçülmesinde görüntü işleme metodu kullanılmıştır. Görüntü işleme prosesleri MATLAB/Computer Vision System Toolbox yazılımı kullanılarak gerçekleştirilmiştir. Nümerik ve deneysel sonuçlara göre süspansiyon sistemindeki yay (k) ve sönüm (b) katsayıları karşılaştırılmış ve nümerik modellerde kullanılan bu katsayılar deneysel sonuçlara göre irdelenmiştir. Sonuç olarak bu araştırma kapsamında, görüntü işleme sonucu ile modelleme yöntemleri arasında elde edilen sonuçların birbirine çok yakın olduğu görülmüştür. Ayrıca deneysel ve teorik sonuçlar arasında sistemin ortalama deplasman davranış farkı ön süspansiyon için minimum 7.92x10-8 mm. ve arka süspansiyon için 1.12x10-7 mm. olarak bulunmuştur.

Thanks

Çalışmaya katkılarından dolayı Volkswagen AG Yetkili Bayisi Gökmen Otomotiv Tic. A.Ş.’ne teşekkür ederiz.

References

  • Aldair, A.A., Wang, W.J., 2012, A neurofuzzy controller for full vehicle active suspension systems,Journal of Vibration and Control, Vol 18, Issue 12, pp. 1837-1854.
  • Avesh, M., Srivastava, R., 2012, Modeling simulation and control of active suspension system in Matlab Simulink environment, IEEE Students Conference on Engineering and Systems, 978-1-4673- 0455-9/12.
  • Bannatyne, R., 1998, Future Developments in Electronically Controlled Steering and Suspension Systems. In: R.K.Jurgen (Editor), Electronic Steering and Suspension Systems (1999), Society of Automotive Engineers, Warrendale-PA, USA, p. 539-557.
  • Çakan A., 2013, Karayolu Taşıtları Süspansiyon Sisteminde Aktif Titreşim Kontrolü. Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü. Makine Müh. ABD, 80 s.
  • Desikan, A., Kalaichelvi, V., 2015, Design for a Preview Control of Semi-ActiveSuspension System using Fuzzy-Logic and Image Processing techniques, IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China, p. 224-229.
  • Erol B., 2015, Çeyrek Taşıt Aktif Süspansiyon Modeli Çıkarımı ve Kontrolü. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Elektronik ve Haberleşme Mühendisliği ABD., 105 s.
  • Eski, İ., Yıldırım, Ş., 2009, Vibration control of vehicle active suspension system using a new robust neural network control system. Simulation Modelling Practice and Theory, 17(5), 778-793.
  • Fayyad, M.S.,2012, Constructing Control System for Active Suspension System, Contemporary Engineering Sciences, Vol. 5, no. 4, 189 – 200.
  • Gönen E., Sert, E., Tutu, G., 2017, Aracın Yalpa Karakteristiğinin Taşıt Dinamiğine Olan Etkisinin Analitik ve Nümerik Yöntemlerle İncelenmesi. Mühendis ve Makine, 58(689), 49-61.
  • Nawawi, B., Z., 2012, Vibration Investigation For Passenger Car With Different Damping Characteristic On Car Suspension Systems, Faculty of Mechanical Engineering, Unıversiti Malaysia Pahang, Thesis of Bachelor Degree.
  • Okuturlar, H., 2018, Bir Binek Araç Süspansiyon Sisteminin Nümerik ve Deneysel Dinamik Analizi, Necmettin Erbakan Üniversitesi, Fen Bilimleri Enstitüsü, Makine Mühendisliği ABD, Yüksek Lisans Tezi, 57 sayfa.
  • Putgül, Y., Altıparmak, D., 2016, Taşıt Süspansiyon Sistemi Çeşitleri ve Ön Düzen Geometrisine Etkileri. Gazi Üniversitesi Politeknik Dergisi, 19(2), 195-202.
  • Ramsbottom, M., D.A. Crolla, 1997, Development and Analysis of a Prototype Controllable Suspension, 972691. In: R.K.Jurgen (Editor), Electronic Steering and Suspension Systems (1999), Society of Automotive Engineers, Warrendale-PA, USA, p. 383-391.
  • Risaliti, E., Tamarozzi, T., Vermaut, M., Cornelis, B., Desmet, W, 2019, Multibody model based estimation of multiple loads and strain field on a vehicle suspension system, Mechanical Systems and Signal Processing, 123, 1-25.
  • Shehata A., Metered H., Oraby W., A., H., 2014, Vibration Control of Active Vehicle Suspension System Using Fuzzy Logic Controller. Vibration Engineering and Technology of Machinery, 23(2), 389- 399.
  • Wang, Q., Zhao, Y., Xu, H., Deng, Y., 2019, Adaptive backstepping control with grey signal predictor for nonlinear active suspension system matching mechanical elastic wheel, Mechanical Systems and Signal Processing, 131, p. 97-111.
  • Williams, R.A., 1997, Automotive Active Suspensions, Part.1: Basic Principles. Proceedings of Institution of Mechanical Engineers, vol.211, part.D, p.415-426.
  • Yıldırım, Ş., 2004, Vibration control of suspension systems using a proposed neural network. Journal of sound and vibration. 277 (4-5), 1059-1069.
  • Yin, S., Huang, Z., 2015, Performance Monitoring for Vehicle Suspension System via Fuzzy Positivistic C-Means Clustering Based on Accelerometer Measurements. IEEE/ASME Transactions on Mechatronics, 20(5), 2613- 2620.
  • Zhou, C., Pan, L., Yu, Y., Zhao, L., 2016, Optimal damping matching for shock absorber of vehicle leaf spring suspension system. Transactions of the Chinese Society of Agricultural Engineering, 32(7), 106-113.

Numerical and Experimental Dynamic Analysis of Vehicle Suspension System

Year 2021, Volume: 9 Issue: 1, 85 - 105, 02.03.2021
https://doi.org/10.36306/konjes.778390

Abstract

In this study, numerical and experimental dynamic analysis of a vehicle suspension system is investigated. Firstly, mathematical model of MacPherson type suspension system of a real vehicle is created by using Newton-Lagrangian laws, MATLAB/Simulink/SimMechanics software and solid model.
The motion behaviors of the system obtained from different modeling approaches are simulated according to different road inputs and modeling results are compared. The dynamic behavior of both the front and rear suspension systems of a real vehicle is measured experimentally for verifying modeling studies. In experimental works, image processing method is used in measuring of vehicle displacement behavior according to the road input. Image processing processes are performed using the MATLAB/ MATLAB/Computer Vision System Toolbox software. According to the numerical and experimental results, the spring (k) and damping (b) coefficients in the suspension system are compared and these coefficients used in the numerical models are examined according to the experimental results.
Consequently, the scope of this research, it is observed that the results obtained between image processing and modeling methods are very close to each other. In addition, the average displacement behavior difference of the system between the experimental and theoretical results are obtained as minimum 7.92x10-8 mm for the front suspension and 1.12x10-7 mm for the rear suspension.

References

  • Aldair, A.A., Wang, W.J., 2012, A neurofuzzy controller for full vehicle active suspension systems,Journal of Vibration and Control, Vol 18, Issue 12, pp. 1837-1854.
  • Avesh, M., Srivastava, R., 2012, Modeling simulation and control of active suspension system in Matlab Simulink environment, IEEE Students Conference on Engineering and Systems, 978-1-4673- 0455-9/12.
  • Bannatyne, R., 1998, Future Developments in Electronically Controlled Steering and Suspension Systems. In: R.K.Jurgen (Editor), Electronic Steering and Suspension Systems (1999), Society of Automotive Engineers, Warrendale-PA, USA, p. 539-557.
  • Çakan A., 2013, Karayolu Taşıtları Süspansiyon Sisteminde Aktif Titreşim Kontrolü. Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü. Makine Müh. ABD, 80 s.
  • Desikan, A., Kalaichelvi, V., 2015, Design for a Preview Control of Semi-ActiveSuspension System using Fuzzy-Logic and Image Processing techniques, IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China, p. 224-229.
  • Erol B., 2015, Çeyrek Taşıt Aktif Süspansiyon Modeli Çıkarımı ve Kontrolü. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Elektronik ve Haberleşme Mühendisliği ABD., 105 s.
  • Eski, İ., Yıldırım, Ş., 2009, Vibration control of vehicle active suspension system using a new robust neural network control system. Simulation Modelling Practice and Theory, 17(5), 778-793.
  • Fayyad, M.S.,2012, Constructing Control System for Active Suspension System, Contemporary Engineering Sciences, Vol. 5, no. 4, 189 – 200.
  • Gönen E., Sert, E., Tutu, G., 2017, Aracın Yalpa Karakteristiğinin Taşıt Dinamiğine Olan Etkisinin Analitik ve Nümerik Yöntemlerle İncelenmesi. Mühendis ve Makine, 58(689), 49-61.
  • Nawawi, B., Z., 2012, Vibration Investigation For Passenger Car With Different Damping Characteristic On Car Suspension Systems, Faculty of Mechanical Engineering, Unıversiti Malaysia Pahang, Thesis of Bachelor Degree.
  • Okuturlar, H., 2018, Bir Binek Araç Süspansiyon Sisteminin Nümerik ve Deneysel Dinamik Analizi, Necmettin Erbakan Üniversitesi, Fen Bilimleri Enstitüsü, Makine Mühendisliği ABD, Yüksek Lisans Tezi, 57 sayfa.
  • Putgül, Y., Altıparmak, D., 2016, Taşıt Süspansiyon Sistemi Çeşitleri ve Ön Düzen Geometrisine Etkileri. Gazi Üniversitesi Politeknik Dergisi, 19(2), 195-202.
  • Ramsbottom, M., D.A. Crolla, 1997, Development and Analysis of a Prototype Controllable Suspension, 972691. In: R.K.Jurgen (Editor), Electronic Steering and Suspension Systems (1999), Society of Automotive Engineers, Warrendale-PA, USA, p. 383-391.
  • Risaliti, E., Tamarozzi, T., Vermaut, M., Cornelis, B., Desmet, W, 2019, Multibody model based estimation of multiple loads and strain field on a vehicle suspension system, Mechanical Systems and Signal Processing, 123, 1-25.
  • Shehata A., Metered H., Oraby W., A., H., 2014, Vibration Control of Active Vehicle Suspension System Using Fuzzy Logic Controller. Vibration Engineering and Technology of Machinery, 23(2), 389- 399.
  • Wang, Q., Zhao, Y., Xu, H., Deng, Y., 2019, Adaptive backstepping control with grey signal predictor for nonlinear active suspension system matching mechanical elastic wheel, Mechanical Systems and Signal Processing, 131, p. 97-111.
  • Williams, R.A., 1997, Automotive Active Suspensions, Part.1: Basic Principles. Proceedings of Institution of Mechanical Engineers, vol.211, part.D, p.415-426.
  • Yıldırım, Ş., 2004, Vibration control of suspension systems using a proposed neural network. Journal of sound and vibration. 277 (4-5), 1059-1069.
  • Yin, S., Huang, Z., 2015, Performance Monitoring for Vehicle Suspension System via Fuzzy Positivistic C-Means Clustering Based on Accelerometer Measurements. IEEE/ASME Transactions on Mechatronics, 20(5), 2613- 2620.
  • Zhou, C., Pan, L., Yu, Y., Zhao, L., 2016, Optimal damping matching for shock absorber of vehicle leaf spring suspension system. Transactions of the Chinese Society of Agricultural Engineering, 32(7), 106-113.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Himmet Okuturlar This is me 0000-0003-3458-297X

Mustafa Tınkır 0000-0002-9259-308X

Publication Date March 2, 2021
Submission Date August 9, 2020
Acceptance Date October 11, 2020
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

IEEE H. Okuturlar and M. Tınkır, “ARAÇ SÜSPANSİYON SİSTEMİNİN NÜMERİK ve DENEYSEL DİNAMİK ANALİZİ”, KONJES, vol. 9, no. 1, pp. 85–105, 2021, doi: 10.36306/konjes.778390.