Year 2025,
Volume: 13 Issue: 3, 837 - 855, 01.09.2025
Halil İbrahim Dokuyucu
,
Nurhan Gürsel Özmen
References
-
M., Yim, W.M., Shen, B., Salemi, D., Rus, M., Moll, H., Lipson, E., Klavins, and G.S. Chirikjian, “Modular self‐reconfigurable robot systems [grand challenges of robotics],” IEEE Robotics and Automation Magazine, vol. 14, no. 1, pp. 43–52, March 2007, doi: 10.1109/MRA.2007.339623.
-
H.İ., Dokuyucu and N., Gürsel Özmen, “Achievements and future directions of self-reconfigurable modular robots,” Journal of Field Robotics, vol. 40, no. 3, pp. 701-746, May 2023, doi: 10.1002/rob.22139.
-
M., Rubenstein, A., Cornejo, and R., Nagpal, “Programmable selfassembly in a thousand‐robot swarm,” Science, vol. 345, no. 6198, pp. 795–799, Aug. 2014, doi: 10.1126/science.1254295.
-
M., Goeller, J., Oberlaender, K., Uhl, A., Roennau, and R., Dillmann, 2012. “Modular robots for on‐orbit satellite servicing,” in IEEE International conference on robotics and biomimetics (ROBIO), Guangzhou, China, 2012, pp. 2018-2023, doi: 10.1109/ROBIO.2012.6491265.
-
Y., Özkan-Aydin and D.I., Goldman, “Self-reconfigurable multilegged robot swarms collectively accomplish challenging terradynamic tasks,” Sci. Robot., vol. 6, July 2021, Art. no. eabf1628, doi: 10.1126/scirobotics.abf1628.
-
J.W., Romanishin, K., Gilpin, S., Claici, and D., Rus, “3D M-Blocks: Self-reconfiguring robots capable of locomotion via pivoting in three dimensions,” in IEEE International Conference on Robotics and Automation, Seattle, WA, 2015, pp. 1925-1932, doi: 10.1109/ICRA.2015.7139450.
-
G., Knizhnik and M., Yim, “Design and experiments with a low‐cost single‐motor modular aquatic robot”, in 17th International conference on ubiquitous robots (UR), Kyoto, Japan, 2020, pp. 233-240, doi: 10.1109/UR49135.2020.9144872.
-
R., Oung and R., D'Andrea, “The distributed flight array: design, implementation, and analysis of a modular vertical take‐off and landing vehicle,” The International Journal of Robotics Research, vol. 33, no. 3, March 2014, pp. 375–400, doi: 10.1177/0278364913501212.
-
M., Yim, D.G., Duff, and K.D., Roufas, “PolyBot: a modular reconfigurable robot,” in Proceedings of the IEEE International conference on robotics and automation, San Francisco, CA, USA. New York: IEEE, 1, April 2000, pp. 514–520. doi: 10.1109/robot.2000.844106.
-
M.R., Jahanshahi, W.M., Shen, T.G., Mondal, M., Abdelbarr, S.F., Masri, and U.A., Qidwai, “Reconfigurable swarm robots for structural health monitoring: a brief review”, International Journal of Intelligent Robotics and Applications, vol. 1, no. 3, Sep. 2017, pp. 287–305, doi:10.1007/s41315-017-0024-8.
-
J., Paulos, N., Eckenstein, T., Tosun, J., Seo, J., Davey, J., Greco, V., Kumar, and M., Yim, “Automated self‐assembly of large maritime structures by a team of robotic boats,” IEEE Transactions on Automation Science and Engineering, vol 12, no. 3, July 2015, pp. 958–968, doi: 10.1109/TASE.2015.2416678
-
J.A., Fulton and H., Schaub, “Forward dynamics analysis of origami-folded deployable spacecraft structures,” Acta Astronautica, vol. 186, Sep. 2021, pp. 549–561, doi: 10.1016/j.actaastro.2021.03.022
-
M., Ciszewski, T., Buratowski, M., Giergiel, P., Małka, and K., Kurc, “Virtual prototyping, design and analysis of an in‐pipe inspection mobile robot,” Journal of Theoretical and Applied Mechanics (Poland), vol. 52, no. 2, April 2014, pp. 417–429.
-
T., Fukuda and S., Nakagawa, “Approach to the dynamically reconfigurable robotic system,” Journal of Intelligent and Robotic Systems, vol. 1, no. 1, March 1988, pp. 55–72, doi: 10.1007/BF00437320.
-
W., Lee, M., Hirai, and S., Hirose, “Gunryu III: reconfigurable magnetic wall‐climbing robot for decommissioning of nuclear reactor,” Advanced Robotics, vol. 27, no. 14, June 2013, pp. 1099–1111, doi: 10.1080/01691864.2013.812174.
-
D., Bao, X., Wang, H., Huang, and B., Liang, “Review of modular selfreconfigurable robotic systems”, in Proceedings of the 2016 2nd workshop on advanced research and technology in industry applications, vol. 5, 2016, pp. 1766–1771, doi: 10.2991/wartia-16.2016.350.
-
W., Saab, P., Racioppo, and P., Ben‐Tzvi, “A review of coupling mechanism designs for modular reconfigurable robots,” Robotica, vol. 37, no. 2, Feb. 2019, pp. 378–403, doi: 10.1017/S0263574718001066.
-
K., Gnana Sheela, P.J., Menon, S., Swetha, C.M., Vandana, R., Mendez, “Review on bio‐inspired modular robotic system,” S. Mohamed, T.D., Subash, (Eds.) Materials today: proceedings, Amsterdam, Netherlands: Elsevier, vol. 24, 2019, doi: 10.1016/j.matpr.2020.03.618.
-
A., Lyder, R.F.M., Garcia, and K., Stoy, “Mechanical design of Odin, an extendable heterogeneous deformable modular robot,” in IEEE/RSJ international conference on intelligent robots and systems (IROS), Nice, France, 2008, doi: 10.1109/IROS.2008.4650888.
-
G.S., Chirikjian, “Kinematics of a metamorphic robotic system,” in Proceedings of the 1994 IEEE international conference on robotics and automation, San Diego, CA, USA, 1994, pp. 449-455 vol.1, doi: 10.1109/ROBOT.1994.351256.
-
K., Stoy, D.J., Christensen, D., Brandt, M., Bordignon, and U.P., Schultz, “Exploit morphology to simplify docking of self‐reconfigurable robots,” in Asama, H., Kurokawa, H., Ota, J. & Sekiyama, K. (Eds.) Distributed autonomous robotic systems, Tsukuba, Japan. Berlin/ Heidelberg, Germany: Springer. vol. 8., 2009, doi: 10.1007/978-3-642-00644-9_39.
-
J. W. Romanishin, K. Gilpin, S. Claici, and D. Rus, "3D M-Blocks: Self-reconfiguring robots capable of locomotion via pivoting in three dimensions," in IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 2015, pp. 1925-1932, doi: 10.1109/ICRA.2015.7139450.
-
D., Saldana, B., Gabrich, G., Li, M., Yim, and V. Kumar, “ModQuad: the flying modular structure that self‐assembles in Midair,” in Proceedings of the IEEE international conference on robotics and automation, Brisbane, QLD, Australia. 2018, New York: IEEE, doi: 10.1109/ICRA.2018.8461014.
-
B., Piranda, P., Chodkiewicz, P., Holobut, S., Bordas, J., Bourgeois, and J. Lengiewicz, “Distributed prediction of unsafe reconfiguration scenarios of modular robotic programmable matter,” IEEE Transactions on Robotics, vol. 37, no. 6, Dec. 2021, pp. 2226–2233, doi: 10.1109/TRO.2021.3074085.
-
M. Nisser, L. Cheng, Y. Makaram, R. Suzuki, and S. Mueller, "ElectroVoxel: Electromagnetically Actuated Pivoting for Scalable Modular Self-Reconfigurable Robots," in International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022, pp. 4254-4260, doi: 10.1109/ICRA46639.2022.9811746.
-
Q., Song, D., Ye, Z., Sun, and B., Wang, “Motion planning techniques for self-configuration of homogeneous pivoting cube modular satellites,” Aerospace Science and Technology, Jan. 2022, vol. 120, Art. no. 107249, doi: 10.1016/j.ast.2021.107249.
-
S., Hauser, M., Mutlu, A.J., Ijspeert, "Kubits: Solid-state self-reconfiguration with programmable magnets," IEEE Robotics and Automation Letters, vol. 5, no. 4, Oct. 2020, pp. 6443-6450, doi: 10.1109/LRA.2020.3013884.
-
A., Bhattacharjee, Y., Lu, A.T., Becker, and M., Kim, "Magnetically controlled modular cubes with reconfigurable self-assembly and disassembly," IEEE Transactions on Robotics, vol. 38, no. 3, June 2022 pp. 1793-1805, doi: 10.1109/TRO.2021.3114607.
-
Z., Butler and D., Rus, “Distributed planning and control for modular robots with unit-compressible modules,” Int. J. Robot. Res., vol. 22, no. 9, Sep. 2003, pp. 699–715, doi: 10.1177/02783649030229002.
-
C., Ünsal, H., Kiliççöte, P.K., Khosla, “A modular self-reconfigurable bipartite robotic system: implementation and motion planning,” Autonomous Robots, vol. 10, Jan. 2001, pp. 23–40, doi: 10.1023/A:1026592302259.
-
B., Piranda, G.J., Laurent, J., Bourgeois, C., Clévy, S., Möbes, and N.L., Fort-Piat, “A new concept of planar self-reconfigurable modular robot for conveying microparts,” Mechatronics, vol. 23, no. 7, Oct. 2013, pp. 906-915, doi: 10.1016/j.mechatronics.2013.08.009.
-
H., Kurokawa, K., Tomita, A., Kamimura, S., Kokaji, T., Hasuo, and S., Murata, “Distributed self-reconfiguration of m-tran iii modular robotic systems,” International Journal of Robotics Research, vol. 27, no. 3-4, March-April 2008, pp. 373–386, doi: 10.1177/0278364907085560.
-
D., Rus and M., Vona, “Crystalline robots: self-reconfiguration with compressible unit modules,” Autonomous Robots, vol. 10, Jan. 2001, pp. 107–124, doi: 10.1023/A:1026504804984.
-
W. Y. Yang, Y. Zou, J. Huang, R. Abujaber, and K. Nakagaki, “TorqueCapsules: Fully-Encapsulated flywheel actuation modules for designing and prototyping movement-based and kinesthetic interaction,” in 37th Annual ACM Symposium on User Interface Software and Technology (UIST '24). Association for Computing Machinery, New York, NY, USA, 2024, Article 98, 1–15, doi: 10.1145/3654777.3676364.
-
M. Gajamohan, M. Muehlebach, T. Widmer and R. D'Andrea, "The Cubli: A reaction wheel based 3D inverted pendulum," in European Control Conference (ECC), Zurich, Switzerland, 2013, pp. 268-274, doi: 10.23919/ECC.2013.6669562.
A DYNAMIC MODEL FOR FLYWHEEL-BASED PIVOTING IN RECONFIGURABLE CUBIC MODULES
Year 2025,
Volume: 13 Issue: 3, 837 - 855, 01.09.2025
Halil İbrahim Dokuyucu
,
Nurhan Gürsel Özmen
Abstract
This paper introduces a dynamic model of a novel flywheel that provides a pivoting motion for a cubic module in reconfigurable systems. The challenges associated with pivoting motion for lattice-type self-reconfigurable modular robots are investigated, particularly the momentum-driven ones, where the existing models use two separated systems for actuation and braking. The proposed system allows a combined actuation and braking system, to manage the pivoting action. The mathematical model of the dynamical flywheel is developed according to Newton’s Law. The flywheel has a variable diameter depending on the angular speed, where the sudden brake is applied by the collision between the flywheel end and the braking notch. The angular momentum transfer from the flywheel to the module body provides pivoting torque, which is the fundamental principle in momentum-driven systems. The dynamic model is verified by experimental studies. The experimental findings indicate that the success rates of the proposed system are 90% and 80% for traverse and horizontal traverse pivoting motion respectively. The average time duration for traverse and horizontal traverse pivoting motion are 0.906 and 0.763 seconds respectively. Based on the findings, the study indicates that the developed flywheel is a potential candidate for a pivoting actuator in the self-reconfigurable modular robotic field.
References
-
M., Yim, W.M., Shen, B., Salemi, D., Rus, M., Moll, H., Lipson, E., Klavins, and G.S. Chirikjian, “Modular self‐reconfigurable robot systems [grand challenges of robotics],” IEEE Robotics and Automation Magazine, vol. 14, no. 1, pp. 43–52, March 2007, doi: 10.1109/MRA.2007.339623.
-
H.İ., Dokuyucu and N., Gürsel Özmen, “Achievements and future directions of self-reconfigurable modular robots,” Journal of Field Robotics, vol. 40, no. 3, pp. 701-746, May 2023, doi: 10.1002/rob.22139.
-
M., Rubenstein, A., Cornejo, and R., Nagpal, “Programmable selfassembly in a thousand‐robot swarm,” Science, vol. 345, no. 6198, pp. 795–799, Aug. 2014, doi: 10.1126/science.1254295.
-
M., Goeller, J., Oberlaender, K., Uhl, A., Roennau, and R., Dillmann, 2012. “Modular robots for on‐orbit satellite servicing,” in IEEE International conference on robotics and biomimetics (ROBIO), Guangzhou, China, 2012, pp. 2018-2023, doi: 10.1109/ROBIO.2012.6491265.
-
Y., Özkan-Aydin and D.I., Goldman, “Self-reconfigurable multilegged robot swarms collectively accomplish challenging terradynamic tasks,” Sci. Robot., vol. 6, July 2021, Art. no. eabf1628, doi: 10.1126/scirobotics.abf1628.
-
J.W., Romanishin, K., Gilpin, S., Claici, and D., Rus, “3D M-Blocks: Self-reconfiguring robots capable of locomotion via pivoting in three dimensions,” in IEEE International Conference on Robotics and Automation, Seattle, WA, 2015, pp. 1925-1932, doi: 10.1109/ICRA.2015.7139450.
-
G., Knizhnik and M., Yim, “Design and experiments with a low‐cost single‐motor modular aquatic robot”, in 17th International conference on ubiquitous robots (UR), Kyoto, Japan, 2020, pp. 233-240, doi: 10.1109/UR49135.2020.9144872.
-
R., Oung and R., D'Andrea, “The distributed flight array: design, implementation, and analysis of a modular vertical take‐off and landing vehicle,” The International Journal of Robotics Research, vol. 33, no. 3, March 2014, pp. 375–400, doi: 10.1177/0278364913501212.
-
M., Yim, D.G., Duff, and K.D., Roufas, “PolyBot: a modular reconfigurable robot,” in Proceedings of the IEEE International conference on robotics and automation, San Francisco, CA, USA. New York: IEEE, 1, April 2000, pp. 514–520. doi: 10.1109/robot.2000.844106.
-
M.R., Jahanshahi, W.M., Shen, T.G., Mondal, M., Abdelbarr, S.F., Masri, and U.A., Qidwai, “Reconfigurable swarm robots for structural health monitoring: a brief review”, International Journal of Intelligent Robotics and Applications, vol. 1, no. 3, Sep. 2017, pp. 287–305, doi:10.1007/s41315-017-0024-8.
-
J., Paulos, N., Eckenstein, T., Tosun, J., Seo, J., Davey, J., Greco, V., Kumar, and M., Yim, “Automated self‐assembly of large maritime structures by a team of robotic boats,” IEEE Transactions on Automation Science and Engineering, vol 12, no. 3, July 2015, pp. 958–968, doi: 10.1109/TASE.2015.2416678
-
J.A., Fulton and H., Schaub, “Forward dynamics analysis of origami-folded deployable spacecraft structures,” Acta Astronautica, vol. 186, Sep. 2021, pp. 549–561, doi: 10.1016/j.actaastro.2021.03.022
-
M., Ciszewski, T., Buratowski, M., Giergiel, P., Małka, and K., Kurc, “Virtual prototyping, design and analysis of an in‐pipe inspection mobile robot,” Journal of Theoretical and Applied Mechanics (Poland), vol. 52, no. 2, April 2014, pp. 417–429.
-
T., Fukuda and S., Nakagawa, “Approach to the dynamically reconfigurable robotic system,” Journal of Intelligent and Robotic Systems, vol. 1, no. 1, March 1988, pp. 55–72, doi: 10.1007/BF00437320.
-
W., Lee, M., Hirai, and S., Hirose, “Gunryu III: reconfigurable magnetic wall‐climbing robot for decommissioning of nuclear reactor,” Advanced Robotics, vol. 27, no. 14, June 2013, pp. 1099–1111, doi: 10.1080/01691864.2013.812174.
-
D., Bao, X., Wang, H., Huang, and B., Liang, “Review of modular selfreconfigurable robotic systems”, in Proceedings of the 2016 2nd workshop on advanced research and technology in industry applications, vol. 5, 2016, pp. 1766–1771, doi: 10.2991/wartia-16.2016.350.
-
W., Saab, P., Racioppo, and P., Ben‐Tzvi, “A review of coupling mechanism designs for modular reconfigurable robots,” Robotica, vol. 37, no. 2, Feb. 2019, pp. 378–403, doi: 10.1017/S0263574718001066.
-
K., Gnana Sheela, P.J., Menon, S., Swetha, C.M., Vandana, R., Mendez, “Review on bio‐inspired modular robotic system,” S. Mohamed, T.D., Subash, (Eds.) Materials today: proceedings, Amsterdam, Netherlands: Elsevier, vol. 24, 2019, doi: 10.1016/j.matpr.2020.03.618.
-
A., Lyder, R.F.M., Garcia, and K., Stoy, “Mechanical design of Odin, an extendable heterogeneous deformable modular robot,” in IEEE/RSJ international conference on intelligent robots and systems (IROS), Nice, France, 2008, doi: 10.1109/IROS.2008.4650888.
-
G.S., Chirikjian, “Kinematics of a metamorphic robotic system,” in Proceedings of the 1994 IEEE international conference on robotics and automation, San Diego, CA, USA, 1994, pp. 449-455 vol.1, doi: 10.1109/ROBOT.1994.351256.
-
K., Stoy, D.J., Christensen, D., Brandt, M., Bordignon, and U.P., Schultz, “Exploit morphology to simplify docking of self‐reconfigurable robots,” in Asama, H., Kurokawa, H., Ota, J. & Sekiyama, K. (Eds.) Distributed autonomous robotic systems, Tsukuba, Japan. Berlin/ Heidelberg, Germany: Springer. vol. 8., 2009, doi: 10.1007/978-3-642-00644-9_39.
-
J. W. Romanishin, K. Gilpin, S. Claici, and D. Rus, "3D M-Blocks: Self-reconfiguring robots capable of locomotion via pivoting in three dimensions," in IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 2015, pp. 1925-1932, doi: 10.1109/ICRA.2015.7139450.
-
D., Saldana, B., Gabrich, G., Li, M., Yim, and V. Kumar, “ModQuad: the flying modular structure that self‐assembles in Midair,” in Proceedings of the IEEE international conference on robotics and automation, Brisbane, QLD, Australia. 2018, New York: IEEE, doi: 10.1109/ICRA.2018.8461014.
-
B., Piranda, P., Chodkiewicz, P., Holobut, S., Bordas, J., Bourgeois, and J. Lengiewicz, “Distributed prediction of unsafe reconfiguration scenarios of modular robotic programmable matter,” IEEE Transactions on Robotics, vol. 37, no. 6, Dec. 2021, pp. 2226–2233, doi: 10.1109/TRO.2021.3074085.
-
M. Nisser, L. Cheng, Y. Makaram, R. Suzuki, and S. Mueller, "ElectroVoxel: Electromagnetically Actuated Pivoting for Scalable Modular Self-Reconfigurable Robots," in International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022, pp. 4254-4260, doi: 10.1109/ICRA46639.2022.9811746.
-
Q., Song, D., Ye, Z., Sun, and B., Wang, “Motion planning techniques for self-configuration of homogeneous pivoting cube modular satellites,” Aerospace Science and Technology, Jan. 2022, vol. 120, Art. no. 107249, doi: 10.1016/j.ast.2021.107249.
-
S., Hauser, M., Mutlu, A.J., Ijspeert, "Kubits: Solid-state self-reconfiguration with programmable magnets," IEEE Robotics and Automation Letters, vol. 5, no. 4, Oct. 2020, pp. 6443-6450, doi: 10.1109/LRA.2020.3013884.
-
A., Bhattacharjee, Y., Lu, A.T., Becker, and M., Kim, "Magnetically controlled modular cubes with reconfigurable self-assembly and disassembly," IEEE Transactions on Robotics, vol. 38, no. 3, June 2022 pp. 1793-1805, doi: 10.1109/TRO.2021.3114607.
-
Z., Butler and D., Rus, “Distributed planning and control for modular robots with unit-compressible modules,” Int. J. Robot. Res., vol. 22, no. 9, Sep. 2003, pp. 699–715, doi: 10.1177/02783649030229002.
-
C., Ünsal, H., Kiliççöte, P.K., Khosla, “A modular self-reconfigurable bipartite robotic system: implementation and motion planning,” Autonomous Robots, vol. 10, Jan. 2001, pp. 23–40, doi: 10.1023/A:1026592302259.
-
B., Piranda, G.J., Laurent, J., Bourgeois, C., Clévy, S., Möbes, and N.L., Fort-Piat, “A new concept of planar self-reconfigurable modular robot for conveying microparts,” Mechatronics, vol. 23, no. 7, Oct. 2013, pp. 906-915, doi: 10.1016/j.mechatronics.2013.08.009.
-
H., Kurokawa, K., Tomita, A., Kamimura, S., Kokaji, T., Hasuo, and S., Murata, “Distributed self-reconfiguration of m-tran iii modular robotic systems,” International Journal of Robotics Research, vol. 27, no. 3-4, March-April 2008, pp. 373–386, doi: 10.1177/0278364907085560.
-
D., Rus and M., Vona, “Crystalline robots: self-reconfiguration with compressible unit modules,” Autonomous Robots, vol. 10, Jan. 2001, pp. 107–124, doi: 10.1023/A:1026504804984.
-
W. Y. Yang, Y. Zou, J. Huang, R. Abujaber, and K. Nakagaki, “TorqueCapsules: Fully-Encapsulated flywheel actuation modules for designing and prototyping movement-based and kinesthetic interaction,” in 37th Annual ACM Symposium on User Interface Software and Technology (UIST '24). Association for Computing Machinery, New York, NY, USA, 2024, Article 98, 1–15, doi: 10.1145/3654777.3676364.
-
M. Gajamohan, M. Muehlebach, T. Widmer and R. D'Andrea, "The Cubli: A reaction wheel based 3D inverted pendulum," in European Control Conference (ECC), Zurich, Switzerland, 2013, pp. 268-274, doi: 10.23919/ECC.2013.6669562.