Year 2025,
Volume: 13 Issue: 3, 892 - 909, 01.09.2025
Osman Sami Kırtıloğlu
,
Elif Akyel
,
Mehmet Güven Koçak
References
-
S. Li, L. Xiong, G. Tang, and J. Strobl, “Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery,” Geomorphology, vol. 354, 2020, doi: 10.1016/j.geomorph.2020.107045.
-
S. A. Kulp and B. H. Strauss, “New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding,” Nat Commun, vol. 10, no. 1, Dec. 2019, doi: 10.1038/s41467-019-12808-z.
-
T. G. Farr et al., “The Shuttle Radar Topography Mission,” Reviews of Geophysics, vol. 45, no. 2, Jun. 2007, doi: https://doi.org/10.1029/2005RG000183.
-
“Google.” Accessed: Apr. 26, 2025. [Online]. Available: https://earth.google.com
-
L. Hawker et al., “A 30 m global map of elevation with forests and buildings removed,” Environmental Research Letters, vol. 17, no. 2, 2022, doi: 10.1088/1748-9326/ac4d4f.
-
D. Dusseau, Z. Zobel, and C. R. Schwalm, “DiluviumDEM: Enhanced accuracy in global coastal digital elevation models,” Remote Sens Environ, vol. 298, Dec. 2023, doi: 10.1016/j.rse.2023.113812.
-
S. A. Kulp and B. H. Strauss, “CoastalDEM: A global coastal digital elevation model improved from SRTM using a neural network,” Remote Sens Environ, vol. 206, pp. 231–239, Mar. 2018, doi: 10.1016/j.rse.2017.12.026.
-
M. Pronk et al., “DeltaDTM: A global coastal digital terrain model,” Sci Data, vol. 11, no. 1, Dec. 2024, doi: 10.1038/s41597-024-03091-9.
-
Z. A. Polat, “Evolution and future trends in global research on cadastre: a bibliometric analysis,” GeoJournal, vol. 84, no. 4, pp. 1121–1134, Aug. 2019, doi: 10.1007/S10708-019-09973-5.
-
Z. A. Polat, M. Alkan, J. Paulsson, J. M. Paasch, and E. Kalogianni, “Global scientific production on LADM-based research: A bibliometric analysis from 2012 to 2020,” Land use policy, vol. 112, p. 105847, Jan. 2022, doi: 10.1016/J.LANDUSEPOL.2021.105847.
-
A. Yu, H. Shi, Y. Wang, J. Yang, C. Gao, and Y. Lu, “A Bibliometric and Visualized Analysis of Remote Sensing Methods for Glacier Mass Balance Research,” Remote Sensing 2023, Vol. 15, Page 1425, vol. 15, no. 5, p. 1425, Mar. 2023, doi: 10.3390/RS15051425.
-
L. Ju, Y. Liu, S. Liu, Q. Xiang, W. Hu, and P. Yu, “Bibliometric analysis of global trends and characteristics of remote sensing for mineral exploration in the early 21st century,” All Earth, vol. 36, no. 1, pp. 1–17, Dec. 2024, doi: 10.1080/27669645.2024.2418730;WGROUP:STRING:PUBLICATION.
-
D. M. S. L. B. Dissanayake et al., “A Comprehensive Bibliometric Analysis of Spatial Data Infrastructure in a Smart City Context,” Land 2025, Vol. 14, Page 492, vol. 14, no. 3, p. 492, Feb. 2025, doi: 10.3390/LAND14030492.
-
N. J. van Eck and L. Waltman, “Software survey: VOSviewer, a computer program for bibliometric mapping,” Scientometrics, vol. 84, no. 2, pp. 523–538, 2010, doi: 10.1007/s11192-009-0146-3.
-
D. Yamazaki et al., “A high-accuracy map of global terrain elevations,” Geophys Res Lett, vol. 44, no. 11, pp. 5844–5853, Jun. 2017, doi: https://doi.org/10.1002/2017GL072874.
-
“NASA.” Accessed: Apr. 27, 2025. [Online]. Available: https://nsidc.org/data/atl08/versions/6
-
“NASA.” Accessed: Apr. 27, 2025. [Online]. Available: https://data.nasa.gov/dataset/gedi-l2a-elevation-and-height-metrics-data-global-footprint-level-v002-d2f2d
-
T. Tadono, H. Ishida, F. Oda, S. Naito, K. Minakawa, and H. Iwamoto, “Precise Global DEM Generation by ALOS PRISM,” ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II4, pp. 71–76, Apr. 2014, doi: 10.5194/isprsannals-II-4-71-2014.
-
B. Wessel et al., “Concept and first example of TanDEM-X high-resolution DEM,” in Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, 2016, pp. 1–4.
-
“Directorate General for Mapping (HGM),” Sayısal Yükseklik Modeli 5 m Seviye-0. Accessed: Apr. 27, 2025. [Online]. Available: https://www.harita.gov.tr/urun/sayisal-yuzey-modeli-5-m-seviye-0-sym5-l0-/1
-
L. Yu, A. Porwal, E. J. Holden, and M. C. Dentith, “Towards automatic lithological classification from remote sensing data using support vector machines,” Comput Geosci, vol. 45, pp. 229–239, 2012, doi: 10.1016/j.cageo.2011.11.019.
-
T. Xu et al., “Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States,” J Hydrol (Amst), vol. 578, 2019, doi: 10.1016/j.jhydrol.2019.124105.
-
L. Yue, H. Shen, L. Zhang, X. Zheng, F. Zhang, and Q. Yuan, “High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 123, pp. 20–34, 2017, doi: 10.1016/j.isprsjprs.2016.11.002.
-
N. Mohamadian et al., “A geomechanical approach to casing collapse prediction in oil and gas wells aided by machine learning,” J Pet Sci Eng, vol. 196, 2021, doi: 10.1016/j.petrol.2020.107811.
-
H. Su, W. Shen, J. Wang, A. Ali, and M. Li, “Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests,” For Ecosyst, vol. 7, no. 1, 2020, doi: 10.1186/s40663-020-00276-7.
-
B. Z. Demiray, M. Sit, and I. Demir, “D-SRGAN: DEM Super-Resolution with Generative Adversarial Networks,” SN Comput Sci, vol. 2, no. 1, 2021, doi: 10.1007/s42979-020-00442-2.
-
L. Chen, Y. Wang, C. Ren, B. Zhang, and Z. Wang, “Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging,” For Ecol Manage, vol. 447, pp. 12–25, 2019, doi: 10.1016/j.foreco.2019.05.057.
-
C.-J. Liu, V. A. Krylov, P. Kane, G. Kavanagh, and R. Dahyot, “IM2ELEVATION: Building height estimation from single-view aerial imagery,” Remote Sens (Basel), vol. 12, no. 17, 2020, doi: 10.3390/RS12172719.
-
B. Yu, F. Chen, and C. Xu, “Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015,” Comput Geosci, vol. 135, 2020, doi: 10.1016/j.cageo.2019.104388.
-
F. Chen, B. Yu, and B. Li, “A practical trial of landslide detection from single-temporal Landsat8 images using contour-based proposals and random forest: a case study of national Nepal,” Landslides, vol. 15, no. 3, pp. 453–464, 2018, doi: 10.1007/s10346-017-0884-x.
-
B. Keshtegar, M. L. Nehdi, N. T. Trung, and R. Kolahchi, “Predicting load capacity of shear walls using SVR-RSM model,” Appl Soft Comput, vol. 112, 2021, doi: 10.1016/j.asoc.2021.107739.
-
C. Huang, Y. Chen, and J. P. Wu, “DEM-based modification of pixel-swapping algorithm for enhancing floodplain inundation mapping,” Int J Remote Sens, vol. 35, no. 1, pp. 365–381, 2014, doi: 10.1080/01431161.2013.871084.
-
D. Dobrinic, M. Gasparovic, and D. Medak, “Sentinel-1 and 2 Time-Series for Vegetation Mapping Using Random Forest Classification: A Case Study of Northern Croatia,” Remote Sens (Basel), vol. 13, no. 12, 2021, doi: 10.3390/rs13122321.
-
X. Tang, T. X. Zhang, J. J. Ma, X. R. Zhang, F. Liu, and L. C. Jiao, “WNet: W-Shaped Hierarchical Network for Remote-Sensing Image Change Detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, 2023, doi: 10.1109/TGRS.2023.3296383.
-
Z. K. Xu, Z. X. Chen, W. W. Yi, Q. L. Gui, W. Hou, and M. Y. Ding, “Deep gradient prior network for DEM super-resolution: Transfer learning from image to DEM,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 150, pp. 80–90, 2019, doi: 10.1016/j.isprsjprs.2019.02.008.
-
M. M. Rahaman, B. Thakur, A. Kalra, R. P. Li, and P. Maheshwari, “Estimating High-Resolution Groundwater Storage from GRACE: A Random Forest Approach,” Environments, vol. 6, no. 6, 2019, doi: 10.3390/environments6060063.
-
H. M. Cooper, C. Zhang, S. E. Davis, and T. G. Troxler, “Object-based correction of LiDAR DEMs using RTK-GPS data and machine learning modeling in the coastal Everglades,” Environmental Modelling & Software, vol. 112, pp. 179–191, 2019, doi: https://doi.org/10.1016/j.envsoft.2018.11.003.
-
R. Vernimmen and A. Hooijer, “New LiDAR-Based Elevation Model Shows Greatest Increase in Global Coastal Exposure to Flooding to Be Caused by Early-Stage Sea-Level Rise,” Earths Future, vol. 11, no. 1, p. e2022EF002880, Jan. 2023, doi: https://doi.org/10.1029/2022EF002880.
-
H. Amini Amirkolaee, H. Arefi, M. Ahmadlou, and V. Raikwar, “DTM extraction from DSM using a multi-scale DTM fusion strategy based on deep learning,” Remote Sens Environ, vol. 274, p. 113014, 2022, doi: https://doi.org/10.1016/j.rse.2022.113014.
-
P. L. Guth et al., “Ranking of 10 Global One-Arc-Second DEMs Reveals Limitations in Terrain Morphology Representation,” Remote Sens (Basel), vol. 16, no. 17, 2024, doi: 10.3390/rs16173273.
-
C. Okolie et al., “Assessment of explainable tree-based ensemble algorithms for the enhancement of Copernicus digital elevation model in agricultural lands,” Int J Image Data Fusion, 2024, doi: 10.1080/19479832.2024.2329563.
-
Q. Li, D. Wang, F. Liu, J. Yu, and Z. Jia, “Correction: lightgbm hybrid model based dem correction for forested areas,” PLoS One, vol. 20, no. 3, p. e0320535, 2025, doi: 10.1371/journal.pone.0320535.
A BIBLIOMETRIC ANALYSIS OF MACHINE LEARNING TECHNIQUES FOR IMPROVING DIGITAL ELEVATION MODEL ACCURACY: TRENDS, GAPS, AND FUTURE DIRECTIONS
Year 2025,
Volume: 13 Issue: 3, 892 - 909, 01.09.2025
Osman Sami Kırtıloğlu
,
Elif Akyel
,
Mehmet Güven Koçak
Abstract
This study presents a bibliometric and thematic analysis of research focused on improving the accuracy of digital elevation models (DEMs) using machine learning (ML) techniques between 2005 and 2025. Drawing from Scopus and Web of Science databases, complemented by manual reference chaining, approximately 250 publications were analyzed. Results show a notable increase in scholarly activity after 2018, linked to the release of enhanced DEM products such as CoastalDEM and FABDEM. Keyword co-occurrence and thematic coding revealed four conceptual pillars: models, methods, applications, and data sources. Ensemble algorithms like Random Forest and LightGBM dominate the methodological landscape, while deep learning methods such as Convolutional Neural Network (CNNs) and Generative Adversarial Network (GANs) are emerging. Despite advancements, methodological homogeneity, reliance on Root Mean Square Error (RMSE), and underutilization of data fusion and semi-supervised learning strategies remain significant limitations. Silent themes and regional gaps emphasize the need for methodological diversification and broader global integration. Future research should prioritize algorithmic diversity, standardized multi-metric validation frameworks, open science practices, and regional model applications. This study offers a structural mapping of DEM–ML research and proposes strategic directions for advancing the field through interdisciplinary collaboration and innovation.
Ethical Statement
The authors declare that this study complies with all ethical standards, including proper authorship attribution, accurate citation practices, transparent data reporting, and the publication of original research findings. No part of this study has been plagiarized, and the work has not been submitted elsewhere.
Thanks
This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors. The authors would like to thank the İzmir Kâtip Çelebi University Library Department for providing access to the Scopus and Web of Science databases used in this research.
References
-
S. Li, L. Xiong, G. Tang, and J. Strobl, “Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery,” Geomorphology, vol. 354, 2020, doi: 10.1016/j.geomorph.2020.107045.
-
S. A. Kulp and B. H. Strauss, “New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding,” Nat Commun, vol. 10, no. 1, Dec. 2019, doi: 10.1038/s41467-019-12808-z.
-
T. G. Farr et al., “The Shuttle Radar Topography Mission,” Reviews of Geophysics, vol. 45, no. 2, Jun. 2007, doi: https://doi.org/10.1029/2005RG000183.
-
“Google.” Accessed: Apr. 26, 2025. [Online]. Available: https://earth.google.com
-
L. Hawker et al., “A 30 m global map of elevation with forests and buildings removed,” Environmental Research Letters, vol. 17, no. 2, 2022, doi: 10.1088/1748-9326/ac4d4f.
-
D. Dusseau, Z. Zobel, and C. R. Schwalm, “DiluviumDEM: Enhanced accuracy in global coastal digital elevation models,” Remote Sens Environ, vol. 298, Dec. 2023, doi: 10.1016/j.rse.2023.113812.
-
S. A. Kulp and B. H. Strauss, “CoastalDEM: A global coastal digital elevation model improved from SRTM using a neural network,” Remote Sens Environ, vol. 206, pp. 231–239, Mar. 2018, doi: 10.1016/j.rse.2017.12.026.
-
M. Pronk et al., “DeltaDTM: A global coastal digital terrain model,” Sci Data, vol. 11, no. 1, Dec. 2024, doi: 10.1038/s41597-024-03091-9.
-
Z. A. Polat, “Evolution and future trends in global research on cadastre: a bibliometric analysis,” GeoJournal, vol. 84, no. 4, pp. 1121–1134, Aug. 2019, doi: 10.1007/S10708-019-09973-5.
-
Z. A. Polat, M. Alkan, J. Paulsson, J. M. Paasch, and E. Kalogianni, “Global scientific production on LADM-based research: A bibliometric analysis from 2012 to 2020,” Land use policy, vol. 112, p. 105847, Jan. 2022, doi: 10.1016/J.LANDUSEPOL.2021.105847.
-
A. Yu, H. Shi, Y. Wang, J. Yang, C. Gao, and Y. Lu, “A Bibliometric and Visualized Analysis of Remote Sensing Methods for Glacier Mass Balance Research,” Remote Sensing 2023, Vol. 15, Page 1425, vol. 15, no. 5, p. 1425, Mar. 2023, doi: 10.3390/RS15051425.
-
L. Ju, Y. Liu, S. Liu, Q. Xiang, W. Hu, and P. Yu, “Bibliometric analysis of global trends and characteristics of remote sensing for mineral exploration in the early 21st century,” All Earth, vol. 36, no. 1, pp. 1–17, Dec. 2024, doi: 10.1080/27669645.2024.2418730;WGROUP:STRING:PUBLICATION.
-
D. M. S. L. B. Dissanayake et al., “A Comprehensive Bibliometric Analysis of Spatial Data Infrastructure in a Smart City Context,” Land 2025, Vol. 14, Page 492, vol. 14, no. 3, p. 492, Feb. 2025, doi: 10.3390/LAND14030492.
-
N. J. van Eck and L. Waltman, “Software survey: VOSviewer, a computer program for bibliometric mapping,” Scientometrics, vol. 84, no. 2, pp. 523–538, 2010, doi: 10.1007/s11192-009-0146-3.
-
D. Yamazaki et al., “A high-accuracy map of global terrain elevations,” Geophys Res Lett, vol. 44, no. 11, pp. 5844–5853, Jun. 2017, doi: https://doi.org/10.1002/2017GL072874.
-
“NASA.” Accessed: Apr. 27, 2025. [Online]. Available: https://nsidc.org/data/atl08/versions/6
-
“NASA.” Accessed: Apr. 27, 2025. [Online]. Available: https://data.nasa.gov/dataset/gedi-l2a-elevation-and-height-metrics-data-global-footprint-level-v002-d2f2d
-
T. Tadono, H. Ishida, F. Oda, S. Naito, K. Minakawa, and H. Iwamoto, “Precise Global DEM Generation by ALOS PRISM,” ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II4, pp. 71–76, Apr. 2014, doi: 10.5194/isprsannals-II-4-71-2014.
-
B. Wessel et al., “Concept and first example of TanDEM-X high-resolution DEM,” in Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, 2016, pp. 1–4.
-
“Directorate General for Mapping (HGM),” Sayısal Yükseklik Modeli 5 m Seviye-0. Accessed: Apr. 27, 2025. [Online]. Available: https://www.harita.gov.tr/urun/sayisal-yuzey-modeli-5-m-seviye-0-sym5-l0-/1
-
L. Yu, A. Porwal, E. J. Holden, and M. C. Dentith, “Towards automatic lithological classification from remote sensing data using support vector machines,” Comput Geosci, vol. 45, pp. 229–239, 2012, doi: 10.1016/j.cageo.2011.11.019.
-
T. Xu et al., “Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States,” J Hydrol (Amst), vol. 578, 2019, doi: 10.1016/j.jhydrol.2019.124105.
-
L. Yue, H. Shen, L. Zhang, X. Zheng, F. Zhang, and Q. Yuan, “High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 123, pp. 20–34, 2017, doi: 10.1016/j.isprsjprs.2016.11.002.
-
N. Mohamadian et al., “A geomechanical approach to casing collapse prediction in oil and gas wells aided by machine learning,” J Pet Sci Eng, vol. 196, 2021, doi: 10.1016/j.petrol.2020.107811.
-
H. Su, W. Shen, J. Wang, A. Ali, and M. Li, “Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests,” For Ecosyst, vol. 7, no. 1, 2020, doi: 10.1186/s40663-020-00276-7.
-
B. Z. Demiray, M. Sit, and I. Demir, “D-SRGAN: DEM Super-Resolution with Generative Adversarial Networks,” SN Comput Sci, vol. 2, no. 1, 2021, doi: 10.1007/s42979-020-00442-2.
-
L. Chen, Y. Wang, C. Ren, B. Zhang, and Z. Wang, “Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging,” For Ecol Manage, vol. 447, pp. 12–25, 2019, doi: 10.1016/j.foreco.2019.05.057.
-
C.-J. Liu, V. A. Krylov, P. Kane, G. Kavanagh, and R. Dahyot, “IM2ELEVATION: Building height estimation from single-view aerial imagery,” Remote Sens (Basel), vol. 12, no. 17, 2020, doi: 10.3390/RS12172719.
-
B. Yu, F. Chen, and C. Xu, “Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015,” Comput Geosci, vol. 135, 2020, doi: 10.1016/j.cageo.2019.104388.
-
F. Chen, B. Yu, and B. Li, “A practical trial of landslide detection from single-temporal Landsat8 images using contour-based proposals and random forest: a case study of national Nepal,” Landslides, vol. 15, no. 3, pp. 453–464, 2018, doi: 10.1007/s10346-017-0884-x.
-
B. Keshtegar, M. L. Nehdi, N. T. Trung, and R. Kolahchi, “Predicting load capacity of shear walls using SVR-RSM model,” Appl Soft Comput, vol. 112, 2021, doi: 10.1016/j.asoc.2021.107739.
-
C. Huang, Y. Chen, and J. P. Wu, “DEM-based modification of pixel-swapping algorithm for enhancing floodplain inundation mapping,” Int J Remote Sens, vol. 35, no. 1, pp. 365–381, 2014, doi: 10.1080/01431161.2013.871084.
-
D. Dobrinic, M. Gasparovic, and D. Medak, “Sentinel-1 and 2 Time-Series for Vegetation Mapping Using Random Forest Classification: A Case Study of Northern Croatia,” Remote Sens (Basel), vol. 13, no. 12, 2021, doi: 10.3390/rs13122321.
-
X. Tang, T. X. Zhang, J. J. Ma, X. R. Zhang, F. Liu, and L. C. Jiao, “WNet: W-Shaped Hierarchical Network for Remote-Sensing Image Change Detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, 2023, doi: 10.1109/TGRS.2023.3296383.
-
Z. K. Xu, Z. X. Chen, W. W. Yi, Q. L. Gui, W. Hou, and M. Y. Ding, “Deep gradient prior network for DEM super-resolution: Transfer learning from image to DEM,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 150, pp. 80–90, 2019, doi: 10.1016/j.isprsjprs.2019.02.008.
-
M. M. Rahaman, B. Thakur, A. Kalra, R. P. Li, and P. Maheshwari, “Estimating High-Resolution Groundwater Storage from GRACE: A Random Forest Approach,” Environments, vol. 6, no. 6, 2019, doi: 10.3390/environments6060063.
-
H. M. Cooper, C. Zhang, S. E. Davis, and T. G. Troxler, “Object-based correction of LiDAR DEMs using RTK-GPS data and machine learning modeling in the coastal Everglades,” Environmental Modelling & Software, vol. 112, pp. 179–191, 2019, doi: https://doi.org/10.1016/j.envsoft.2018.11.003.
-
R. Vernimmen and A. Hooijer, “New LiDAR-Based Elevation Model Shows Greatest Increase in Global Coastal Exposure to Flooding to Be Caused by Early-Stage Sea-Level Rise,” Earths Future, vol. 11, no. 1, p. e2022EF002880, Jan. 2023, doi: https://doi.org/10.1029/2022EF002880.
-
H. Amini Amirkolaee, H. Arefi, M. Ahmadlou, and V. Raikwar, “DTM extraction from DSM using a multi-scale DTM fusion strategy based on deep learning,” Remote Sens Environ, vol. 274, p. 113014, 2022, doi: https://doi.org/10.1016/j.rse.2022.113014.
-
P. L. Guth et al., “Ranking of 10 Global One-Arc-Second DEMs Reveals Limitations in Terrain Morphology Representation,” Remote Sens (Basel), vol. 16, no. 17, 2024, doi: 10.3390/rs16173273.
-
C. Okolie et al., “Assessment of explainable tree-based ensemble algorithms for the enhancement of Copernicus digital elevation model in agricultural lands,” Int J Image Data Fusion, 2024, doi: 10.1080/19479832.2024.2329563.
-
Q. Li, D. Wang, F. Liu, J. Yu, and Z. Jia, “Correction: lightgbm hybrid model based dem correction for forested areas,” PLoS One, vol. 20, no. 3, p. e0320535, 2025, doi: 10.1371/journal.pone.0320535.